Texas A&M physicist Kevin Kelly earns American Physical Society Early Career Award
Grant and Award Announcement
Updates every hour. Last Updated: 23-Apr-2025 01:08 ET (23-Apr-2025 05:08 GMT/UTC)
Dr. Kevin Kelly has been recognized with the APS’s 2025 Henry Primakoff Award for Early-Career Particle Physics for his work on neutrino and dark matter physics.
A distant interstellar cloud was found to contain an abundance of pyrene, a type of large carbon-containing molecules known as polycyclic aromatic hydrocarbons (PAHs). This suggest pyrene may have been the source of much of the carbon in our solar system.
The ideal material for interfacing electronics with living tissue is soft, stretchable, and just as water-loving as the tissue itself—in short, a hydrogel. Semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, on the other hand, are rigid, brittle, and water-hating, impossible to dissolve in the way hydrogels have traditionally been built. A paper published today in Science from the UChicago Pritzker School of Molecular Engineering (PME) has solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. Led by Asst. Prof. Sihong Wang’s research group, the result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.