News Release

To grow or to flower: Genes IDed in early land plant descendant also found in modern crops

Peer-Reviewed Publication

University of Tokyo

Male and Female Liverworts

image: Healthy female (left) and male (right) Marchantia polymorpha liverworts develop distinctive umbrella-shaped structures when they are ready to reproduce. Researchers at the University of Tokyo and their colleagues around Japan investigated the genetic mechanisms controlling the switch from growth to reproduction. view more 

Credit: Image by University of Tokyo, CC-BY-SA

Since they first arrived on land, plants have likely been using the same genetic tools to regulate whether they grow bigger or reproduce. The discovery was made using liverwort, one descendant of the first plants to move out of the ancient oceans and onto land.

Liverworts grow all over the world and resemble moss, spreading on moist soil under some shade. Male and female versions of liverwort are recognized by unique, umbrella-shaped structures that shoot up from the base of the plant.

"Liverworts have the maximum power with the least structure," said Professor Yuichiro Watanabe from the University of Tokyo's Department of Life Sciences, an expert in plant molecular biology.

The liverwort genome is structurally simple compared to the flowering plants that are commonly used in research laboratories, like tobacco and thale cress (Arabidopsis). Flowering plants are evolutionarily "younger" plants than liverworts, with gene duplications and redundancies that make studying their genomes more complicated.

Despite that simplicity, the liverwort genome appears to have all the same life-cycle stages and powers to regulate them.

Genome similarities

The entire genome of the liverwort species Marchantia polymorpha was first sequenced in 2017 by an international team, which included several researchers who also participated in the recently published gene analysis.

When they examined the full genome, researchers discovered that even the simple liverwort has about 100 different types of a small molecule, called microRNA, which regulate the activity of other genes.

About eight of the liverwort microRNAs were nearly identical to known thale cress microRNAs. These eight microRNAs fascinated researchers because the ancestral plants that evolved into modern liverworts and modern thale cress split over 450 million years ago.

"So, why keep them? We want to know what those shared microRNAs are doing, and liverworts are now a convenient model for us to investigate," said Watanabe.

To get bigger or to reproduce

Most mammals, including humans, are born with the cells that they'll need as adults to produce their own offspring. Plants, however, develop their reproductive cells only after switching from the vegetative stage, when they grow new leaves or get bigger, to the reproductive stage.

One of the microRNAs that helps flowering plants control the shift to the reproductive stage is also one of the eight microRNAs shared between thale cress and liverworts. That microRNA is known to researchers as microRNA156/529.

To pin down the potential role of this evolutionarily conserved microRNA, Watanabe's research group created a genetically modified version of liverwort that lacked microRNA156/529. Those so-called microRNA156/529 knockout liverworts produced reproductive cells on their vegetative tissues rather than developing the normal umbrella-shaped reproductive structures that distinguish males and females.

"This was amazing to us. Those liverworts skipped some part of the reproductive process and the body itself becomes the reproductive organ," said Watanabe.

Identifying the same molecule with a similar role in the vegetative-to-reproductive switch in such different plant species reveals that microRNA156/529 and the other molecules it interacts with are part of an important control module used by potentially all land plants to regulate their reproductive timing.

Watanabe imagines that in the future, farmers could measure the amount of microRNA156/529 in crops to predict harvest times.

"We hope our results inspire others to develop new applications for plant reproduction," said Watanabe.

###

Research Article

Masayuki Tsuzuki, Kazutaka Futagami, Masaki Shimamura, Chikako Inoue, Kan Kunimoto, Takashi Oogami, Yuki Tomita, Keisuke Inoue, Takayuki Kohchi, Shohei Yamaoka, Takashi Araki, Takahiro Hamada, Yuichiro Watanabe. 19 September 2019. An early arising role of the microRNA156/529-SPL module in reproductive development revealed by the liverwort Marchantia polymorpha. Current Biology. DOI: 10.1016/j.cub.2019.07.084

https://doi.org/10.1016/j.cub.2019.07.084

Related Links

Watanabe Lab website: http://park.itc.u-tokyo.ac.jp/RNAwatanabe/EN_index.php
Department of Life Sciences: http://bio.c.u-tokyo.ac.jp/english.html
Graduate Program on Environmental Science: http://gpes.c.u-tokyo.ac.jp/index.html
Graduate School of Arts and Sciences: http://www.c.u-tokyo.ac.jp/eng_site/

Research Contact

Professor Yuichiro Watanabe
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
E-mail: solan@bio.c.u-tokyo.ac.jp
Tel (landline): +81-(0)354546776

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.