News Release

Preventing spread of SARS coronavirus-2 in humans

Göttingen infection researchers identify potential drug

Peer-Reviewed Publication

Deutsches Primatenzentrum (DPZ)/German Primate Center

Blocking SARS-CoV-2 cell entry

image: The attachment protein "spike" of the new coronavirus SARS-CoV-2 uses the same cellular attachment factor (ACE2) as SARS-CoV and uses the cellular protease TMPRSS2 for its activation. Existing, clinically approved drugs directed against TMPRSS2 inhibit SARS-CoV-2 infection of lung cells. view more 

Credit: Illustration: Markus Hoffmann

Several coronaviruses circulate worldwide and constantly infect humans, which normally caused only mild respiratory disease. Currently, however, we are witnessing a worldwide spread of a new coronavirus with more than 90,000 confirmed cases and over 3,000 deaths. The new virus has been named SARS coronavirus-2 and has been transmitted from animals to humans. It causes a respiratory disease called COVID-19 that may take a severe course. The SARS coronavirus-2 has been spreading since December 2019 and is closely related to the SARS coronavirus that caused the SARS pandemic in 2002/2003. No vaccines or drugs are currently available to combat these viruses.

Stopping virus spread

A team of scientists led by infection biologists from the German Primate Centre and including researchers from Charité, the University of Veterinary Medicine Hannover Foundation, the BG-Unfallklinik Murnau, the LMU Munich, the Robert Koch Institute and the German Center for Infection Research, wanted to find out how the new coronavirus SARS-CoV-2 enters host cells and how this process can be blocked. The researchers identified a cellular protein that is important for the entry of SARS-CoV-2 into lung cells. "Our results show that SARS-CoV-2 requires the protease TMPRSS2, which is present in the human body, to enter cells," says Stefan Pöhlmann, head of the Infection Biology Unit at the German Primate Center. "This protease is a potential target for therapeutic intervention."

Promising drug

Since it is known that the drug camostat mesilate inhibits the protease TMPRSS2, the researchers have investigated whether it can also prevent infection with SARS-CoV-2. "We have tested SARS-CoV-2 isolated from a patient and found that camostat mesilate blocks entry of the virus into lung cells," says Markus Hoffmann, the lead author of the study. Camostat mesilate is a drug approved in Japan for use in pancreatic inflammation. "Our results suggest that camostat mesilate might also protect against COVID-19," says Markus Hoffmann. "This should be investigated in clinical trials."

###

Original publication

Hoffmann, M et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically-proven protease inhibitor. Cell, DOI: 10.1016/j.cell.2020.02.052

Contact and notes for editors

Prof. Dr. Stefan Pöhlmann
Tel: +49 551 3851-150
Email: spoehlmann@dpz.eu

Dr. Markus Hoffmann
Tel: +49 551 3851 338
Email: mhoffmann@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
Email: sdiederich@dpz.eu

Printable pictures: https://owncloud.dpz.eu/index.php/s/xfLpjcYeWoIreVa

Video: https://youtu.be/Ry9wPe3roP4

You will also find the press release on our website. Please send us a reference copy or link in case of publication.

The German Primate Center GmbH (DPZ) - Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ also maintains four field stations in the tropics and is a reference and service center for all aspects of primate research. The DPZ is one of the 96 research and infrastructure facilities of the Leibniz Association.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.