News Release

Químico de RUDN University desarrolló un método ecológico para obtener un medicamento contra la malaria y la lepra

Peer-Reviewed Publication

RUDN University

RUDN University Chemist Developed Green Method for Malaria and Leprosy Drug Production

image: A chemist from RUDN University suggested an eco-friendly method for the synthesis of dapsone, a substance that inhibits the growth of malaria and leprosy agents. The main component of the new reaction is hydrogen peroxide that does not form environmentally destructive compounds, and the only by-product is simple water. Unlike other technologies, this method includes only one stage of dapsone production and does not require high temperatures. The catalyst of the reaction can be reused without any loss of efficiency. view more 

Credit: RUDN University

Un químico de RUDN University desarrolló un método de síntesis "verde" de la dapsona, una sustancia que inhibe el crecimiento de los patógenos de la malaria y la lepra. El principal reactivo de la nueva reacción es el peróxido de hidrógeno, el cual no forma compuestos peligrosos para el medio ambiente y el único subproducto de la reacción es el agua. A diferencia de otros métodos, éste permite obtener la dapsona en una sola etapa sin usar altas temperaturas, y el catalizador de la reacción se puede reutilizar sin perder sus propiedades. Los resultados de la investigación fueron publicados en la revista Microporous and Mesoporous Materials.

La lepra es considerada una enfermedad "olvidada", pero cada año en todo el mundo (principalmente en India, Brasil y Nepal) se detectan 200 mil casos de esta enfermedad. La lepra se puede tratar tomando antibióticos a tiempo para detener el crecimiento de bacterias del género Mycobacterium. Otra enfermedad, la malaria, fue y sigue siendo una de las más comunes. Más de 200 millones de personas se enferman de malaria cada año. El crecimiento del patógeno de la malaria, un organismo unicelular del género Plasmodium, también se puede detener con antibióticos. La dapsona es un antibiótico que actúa sobre los patógenos tanto de la lepra como de la malaria. Está en la Lista Modelos de Medicamentos Esenciales de la OMS y se considera seguro y asequible. Sin embargo, su síntesis no es "verde", requiere condiciones duras: altas temperaturas y ácidos agresivos como el sulfúrico. Un químico de RUDN University desarrolló un método que permitirá obtener la dapsona usando métodos de química verde. Esto ampliará la producción y hará que la dapsona sea más accesible.

La dapsona (4,4-diaminofenilsulfona) contiene dos anillos de benceno con grupos amino NH2. Los anillos están conectados entre sí a través de un átomo oxidado de azufre o un grupo SO2. La dapsona se obtiene oxidando su precursor, el cual tiene anillos de benceno que están conectados a través de azufre e hidrógeno, el grupo SH. La oxidación también puede afectar a grupos amino vulnerables, por lo que deben ser protegidos antes de la reacción, por ejemplo, usando grupos protectores. El químico de RUDN University desarrolló un catalizador que permite oxidar los grupos SH del precursor de la dapsona utilizando peróxido de hidrógeno. Este se considera el oxidante "más verde", ya que produce solo un subproducto: agua. La oxidación se lleva a cabo a temperatura ambiente, en una sola etapa, y sin protección previa de los grupos amino.

"Previamente se conocían varias reacciones de síntesis de la dapsona, pero ninguna de ellas puede considerarse totalmente ecológica. Todas se llevan a cabo en condiciones duras y en varias etapas: primero se adicionan grupos protectores, luego ocurre la síntesis, y finalmente se eliminan los grupos protectores. Esta complejidad aumenta la probabilidad de obtener sustancias no deseadas y subproductos que necesitan ser removidos de la reacción", explicó Rafael Luque, PhD, jefe del Centro de Investigación "Diseño Molecular y Síntesis de Compuestos Innovadores para la Medicina", RUDN University.

Un grupo de químicos crearon un catalizador a partir de polioxometalatos a base de wolframio. Para esto, reemplazaron algunos de los átomos de wolframio con átomos de vanadio; esto aumentó las propiedades ácidas del catalizador, por lo tanto, la velocidad de la reacción aumentó y ocurrió a temperatura baja. Para evitar la dispersión del catalizador durante la reacción, los químicos de RUDN University fijaron los compuestos obtenidos dentro de un material poroso: un hidrogel hecho de ácido propanoico y acrilamida. Esto permite que el catalizador se utilice al menos tres veces sin perder las propiedades. Los químicos también seleccionaron las condiciones óptimas para la síntesis y la concentración de los reactivos, obteniendo así una oxidación del 100% del precursor de la dapsona en nueve horas a una temperatura de 25?.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.