News Release

Robot developed for automated assembly of designer nanomaterials

Peer-Reviewed Publication

Institute of Industrial Science, The University of Tokyo

Robot Developed for Automated Assembly of Designer Nanomaterials

image: Robot developed for automated assembly of designer nanomaterials. view more 

Credit: 2018 SATORU MASUBUCHI, INSTITUTE OF INDUSTRIAL SCIENCE, THE UNIVERSITY OF TOKYO

Tokyo--A current area of intense interest in nanotechnology is van der Waals heterostructures, which are assemblies of atomically thin two-dimensional (2D) crystalline materials that display attractive conduction properties for use in advanced electronic devices.

A representative 2D semiconductor is graphene, which consists of a honeycomb lattice of carbon atoms that is just one atom thick. The development of van der Waals heterostructures has been restricted by the complicated and time-consuming manual operations required to produce them. That is, the 2D crystals typically obtained by exfoliation of a bulk material need to be manually identified, collected, and then stacked by a researcher to form a van der Waals heterostructure. Such a manual process is clearly unsuitable for industrial production of electronic devices containing van der Waals heterostructures

Now, a Japanese research team led by the Institute of Industrial Science at The University of Tokyo has solved this issue by developing an automated robot that greatly speeds up the collection of 2D crystals and their assembly to form van der Waals heterostructures. The robot consists of an automated high-speed optical microscope that detects crystals, the positions and parameters of which are then recorded in a computer database. Customized software is used to design heterostructures using the information in the database. The heterostructure is then assembled layer by layer by a robotic equipment directed by the designed computer algorithm. The findings were reported in Nature Communications.

"The robot can find, collect, and assemble 2D crystals in a glove box," study first author Satoru Masubuchi says. "It can detect 400 graphene flakes an hour, which is much faster than the rate achieved by manual operations."

When the robot was used to assemble graphene flakes into van der Waals heterostructures, it could stack up to four layers an hour with just a few minutes of human input required for each layer. The robot was used to produce a van der Waals heterostructure consisting of 29 alternating layers of graphene and hexagonal boron nitride (another common 2D semiconductor). The record layer number of a van der Waals heterostructure produced by manual operations is 13, so the robot has greatly increased our ability to access complex van der Waals heterostructures.

"A wide range of materials can be collected and assembled using our robot," co-author Tomoki Machida explains. "This system provides the potential to fully explore van der Waals heterostructures."

The development of this robot will greatly facilitate production of van der Waals heterostructures and their use in electronic devices, taking us a step closer to realizing devices containing atomic-level designer materials.

###

The article "Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices" was published in Nature Communications at DOI: 10.1038/s41467-018-03723-w.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.