News Release

神经网络或可帮助临床医生寻找“丑小鸭”癌前皮肤病变

Peer-Reviewed Publication

American Association for the Advancement of Science (AAAS)

Neural Network Could Help Clinicians Look for "Ugly Duckling" Pre-Cancerous Skin Lesions (2 of 5)

image: Example images with multiple lesions on the back of a subject. The neural network analyzes the images and classifies the lesions as nonsuspicious or suspicious (red). This material relates to a paper that appeared in the Feb. 17, 2021, issue of Science Translational Medicine, published by AAAS. The paper, by L.R. Soenksen at Massachusetts Institute of Technology in Cambridge, MA; and colleagues was titled, "Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images." view more 

Credit: L.R. Soenksen <i>et al., Science Translational Medicine</i> (2021)

一个分析照片的神经网络系统可以对可疑的、潜在癌前皮肤病变进行分级和甄别;这些癌前皮肤病变如果不及早发现和清除,它们可能会演变成致命的恶性皮肤癌:黑色素瘤。该系统准确评估了68位患者的可疑病变,其结果与皮肤科医生的经受时间考验的评估基本吻合。这些结果表明,该平台可以帮助临床医生更快、更大规模地在病人就诊时发现可疑病变,从而有可能提前诊断和施治。黑色素瘤是最致命形式的皮肤癌,但对那些在疾病萌芽时期就切除了黑色素瘤的患者来说,其转归非常好,因为那时的病变仍处于浅薄状态,并未扩散至皮肤深层。为了筛查黑色素瘤,临床医生常会使用ABCDE组标准来评估较大面积的皮肤表面,以期找到显示出癌前迹象的“丑小鸭”病变。当局还开始推出大型皮肤癌筛查计划,旨在减轻黑色素瘤负担,但诊所缺乏评估大量患者病变的可扩展筛检规模的工具。Luis Soenksen和同事在此设计了一个神经网络平台,它可对皮肤病变拍照(甚至可用手机摄像头拍的照片),快速发现可能需要追踪检测的可疑标记。该团队用3万8283张照片(包括133位患者的皮肤照片)来培训他们的技术,并观察到该方法能以90.3%和89.9%的灵敏度和特异性将可疑病变与非可疑病变进行区分。在另一项实验中,该策略还对68位患者皮肤上的“丑小鸭”病变进行了排名,其排名与3位皮肤科医生的评估结果基本相符。作者补充说,未来的改进可能会帮助解决该系统当前存在的某些局限性,例如使其能被用于范围更广的相机、光线设置和摄影者。

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.