Cdc42 is crucial for the early regulation of hepatic stellate cell activation
Osaka Metropolitan University
The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation. However, the mechanisms regulating these changes remain unexplored.
In this study, an Osaka Metropolitan University-led team analyzed the morphological alterations associated with HSC activation in vivo using carbon tetrachloride treatment and identified the key factors regulating these changes in vitro. Following carbon tetrachloride treatment, HSCs exhibited shortened cell processes and HSC spines, adopting an oval shape.
Subsequently, the HSCs underwent further morphological changes into two activated forms: flattened and complex shapes. In vitro, activation of cell division cycle 42 (Cdc42) maintained the morphological characteristics of quiescent HSCs. Cdc42 activation in HSC cell lines inhibited the expression of markers associated with activated HSCs. Cdc42 inhibitor treatment in vivo prevented quiescent HSCs from maintaining their morphological characteristics and hindered activated HSCs from reverting to the quiescent state. In addition, HSCs around fibrotic areas in the human liver exhibited morphological alterations indicative of early activation.
These findings demonstrate that Cdc42 is a crucial regulator of morphological and molecular alterations associated with HSC activation, identifying it as a novel target for the development of therapeutic agents against liver fibrosis.
###
About OMU
Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: X, Facebook, Instagram, LinkedIn.
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.