Article Highlight | 6-Dec-2024

Combination of baicalin and gardenoside mitigates brain damage by lowering AQP-4 expression levels in rat model of cerebral ischemia/reperfusion

Xia & He Publishing Inc.

Background and objectives

This study focused on the effects of the combination of baicalin (BC) and gardenoside (GD) (7:3) on blood-brain barrier (BBB) permeability, brain tissue water content, and aquaporin-4 (AQP-4) expression in rats with cerebral ischemia-reperfusion (I/R) injury. The previous research conducted by the investigators demonstrated that the combination of BC and GD (7:3) has anti-ischemic properties. Further research was conducted to determine the mechanism underlying the reduction in cerebral edema.

Methods

A total of 150 male Sprague-Dawley rats were randomly assigned to the following groups to receive treatment: sham, I/R, allyl chloride (AC), 30 mg/kg BC/GD, and 60 mg/kg BC/GD groups. Then, neurobehavioral scores were assigned to determine the effectiveness of the treatment. Evans blue (EB) was used to trace the BBB. The dry/wet method was used to evaluate the brain water content. Transmission electron microscopy was performed to examine the ultrastructure of the brain tissue. Immunohistochemistry and western blot were performed to detect the presence of AQP-4 in the hippocampus. Reverse transcription polymerase chain reaction (RT-PCR) was used to determine the amount of AQP-4 mRNA.

Results

The BBB permeability, brain water content, and AQP-4 expression were significantly greater in the CA1 area of the hippocampus in the I/R group, when compared to the sham group. Furthermore, the endoplasmic reticulum was dilated, and most of the nerve cells underwent degeneration or necrosis. After the BC/GD treatment, the markers improved in a dose-dependent manner.

Conclusions

BC/GD can inhibit the BBB permeability and cerebral edema by reducing the expression of AQP-4 in the CA1 area of the hippocampus in rats after I/R injury, improving the structure of nerve cells and exerting brain-protective effects.

 

Full text:

https://www.xiahepublishing.com/2835-6357/FIM-2022-00036

 

The study was recently published in the Future Integrative Medicine.

Future Integrative Medicine (FIM) publishes both basic and clinical research, including but not limited to randomized controlled trials, intervention studies, cohort studies, observational studies, qualitative and mixed method studies, animal studies, and systematic reviews.

 

Follow us on X: @xiahepublishing

Follow us on LinkedIn:  Xia & He Publishing Inc.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.