Figure 2: Investigations into water-splitting properties and highly active co-catalysts (IMAGE)
Caption
(a). The water-splitting properties of the dopant ions are different. The anode (*13) is a photocatalyst electrode, while the cathode (*14) is a platinum electrode. The potential is based on the RHE (Reversible Hydrogen Electrode) with 1.23 V being applied to produce oxygen gas from the water oxidation reaction. The photocatalyst electrode, which is doped with Ti4+, has a high hydrogen production rate but its hydrogen peroxide selectivity is low. If it is doped with Sn2+, its hydrogen peroxide selectivity increases while the amount of hydrogen it can produce decreases. By doping the catalyst with both Sn2+ and Ti4+ it is possible to achieve high selectivity and production rates for both hydrogen and hydrogen peroxide. (b). Searching for high-activity co-catalysts using first principle calculations. Within the structure of the SnTiOx co-catalyst applied to facilitate hydrogen peroxide production, it was estimated that a SnO2 layer around 1 nanometer thick formed above the SnTiO3. The Gibbs energy change for OH absorption was close to 1.76 eV, indicating high photocatalytic activity for hydrogen peroxide production.
Credit
Modified versions of Fig 5 d and f from Tachikawa et al. Nature Communications volume 13, Article number: 1499 (2022).
Usage Restrictions
Credit must be given to the creator.
License
CC BY