Ancient pathogens that escape from melting permafrost have real potential to damage microbial communities and might potentially threaten human health, according to a new study by Giovanni Strona of the European Commission Joint Research Centre and colleagues, published July 27 in the open-access journal PLOS Computational Biology.
The idea that “time-traveling” pathogens trapped in ice or hidden in remote laboratory facilities could break free to cause catastrophic outbreaks has inspired generations of novelists and screenwriters. While melting glaciers and permafrost are giving many types of dormant microbes the opportunity to re-emerge, the potential threats to human health and the environment posed by these microbes have been difficult to estimate.
In a new study, Strona’s team quantified the ecological risks posed by these microbes using computer simulations. The researchers performed artificial evolution experiments where digital virus-like pathogens from the past invade communities of bacteria-like hosts. They compared the effects of invading pathogens on the diversity of host bacteria to diversity in control communities where no invasion occurred.
The team found that in their simulations, the ancient invading pathogens could often survive and evolve in the modern community, and about 3 percent became dominant. While most of the dominant invaders had little effect on the composition of the larger community, about 1 percent of the invaders yielded unpredictable results. Some caused up to one third of the host species to die out, while others increased diversity by up to 12 percent compared to the control simulations.
The risks posed by this 1 percent of released pathogens may seem small, but given the sheer number of ancient microbes regularly released into modern communities, outbreak events still represent a substantial hazard. The new findings suggest that the risks posed by time-traveling pathogens – so far confined to science fiction stories – could in fact be powerful drivers of ecological change and threats to human health.
############
In your coverage, please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011268
Citation: Strona G, Bradshaw CJA, Cardoso P, Gotelli NJ, Guillaume F, Manca F, et al. (2023) Time-travelling pathogens and their risk to ecological communities. PLoS Comput Biol 19(7): e1011268. https://doi.org/10.1371/journal.pcbi.1011268
Author Countries: Australia, Finland, US
Funding: GS, PC, VM and LZ where partly supported by a "HiLIFE BIORESLIENCE seed grant" from the University of Helsinki (https://www.helsinki.fi/en/hilife-helsinki-institute-life-science/research/grand-challenges/understanding-biological-resilience-bioresilience). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Journal
PLOS Computational Biology
Method of Research
Computational simulation/modeling
Subject of Research
Animals
Article Title
Time-travelling pathogens and their risk to ecological communities
Article Publication Date
27-Jul-2023
COI Statement
The authors have declared that no competing interests exist.