- Study led by University of Oxford researchers has revealed the mechanisms that cause lithium metal solid-state batteries to fail.
- Researchers used a high-resolution imaging method to visualize batteries in unprecedented detail during charging.
- The new insights could help overcome the technical issues with solid-state batteries, unlocking a game-changing technology for electric vehicles and aviation.
Significantly improved electric vehicle (EV) batteries could be a step closer thanks to a new study led by University of Oxford researchers, published today in Nature. Using advanced imaging techniques, this revealed mechanisms which cause lithium metal solid-state batteries (Li-SSBs) to fail. If these can be overcome, solid-state batteries using lithium metal anodes could deliver a step-change improvement in EV battery range, safety and performance, and help advance electrically powered aviation.
One of the co-lead authors of the study Dominic Melvin, a PhD student in the University of Oxford’s Department of Materials, said: ‘Progressing solid-state batteries with lithium metal anodes is one of the most important challenges facing the advancement of battery technologies. While lithium-ion batteries of today will continue to improve, research into solid-state batteries has the potential to be high-reward and a gamechanger technology.’
Li-SSBs are distinct from other batteries because they replace the flammable liquid electrolyte in conventional batteries with a solid electrolyte and use lithium metal as the anode (negative electrode). The use of the solid electrolyte improves the safety, and the use of lithium metal means more energy can be stored. A critical challenge with Li-SSBs, however, is that they are prone to short circuit when charging due to the growth of ‘dendrites’: filaments of lithium metal that crack through the ceramic electrolyte. As part of the Faraday Institution’s SOLBAT project, researchers from the University of Oxford’s Departments of Materials, Chemistry and Engineering Science, have led a series of in-depth investigations to understand more about how this short-circuiting happens.
In this latest study, the group used an advanced imaging technique called X-ray computed tomography at Diamond Light Source to visualise dendrite failure in unprecedented detail during the charging process. The new imaging study revealed that the initiation and propagation of the dendrite cracks are separate processes, driven by distinct underlying mechanisms. Dendrite cracks initiate when lithium accumulates in sub-surface pores. When the pores become full, further charging of the battery increases the pressure, leading to cracking. In contrast, propagation occurs with lithium only partially filling the crack, through a wedge-opening mechanism which drives the crack open from the rear.
This new understanding points the way forward to overcoming the technological challenges of Li-SSBs. Dominic Melvin said: ‘For instance, while pressure at the lithium anode can be good to avoid gaps developing at the interface with the solid electrolyte on discharge, our results demonstrate that too much pressure can be detrimental, making dendrite propagation and short-circuit on charging more likely.’
Sir Peter Bruce, Wolfson Chair, Professor of Materials at the University of Oxford, Chief Scientist of the Faraday Institution, and corresponding author of the study, said: ‘The process by which a soft metal such as lithium can penetrate a highly dense hard ceramic electrolyte has proved challenging to understand with many important contributions by excellent scientists around the world. We hope the additional insights we have gained will help the progress of solid-state battery research towards a practical device.’
According to a recent report by the Faraday Institution, SSBs may satisfy 50% of global demand for batteries in consumer electronics, 30% in transportation, and over 10% in aircraft by 2040.
Professor Pam Thomas, CEO, Faraday Institution, said: ‘SOLBAT researchers continue to develop a mechanistic understanding of solid-state battery failure – one hurdle that needs to be overcome before high-power batteries with commercially relevant performance could be realised for automotive applications. The project is informing strategies that cell manufacturers might use to avoid cell failure for this technology. This application-inspired research is a prime example of the type of scientific advances that the Faraday Institution was set up to drive.’
Notes to editors:
For media enquiries and interview requests, contact Dr Caroline Wood, Communications Manager, University of Oxford: caroline.wood@admin.ox.ac.uk
The study ‘Dendrite initiation and propagation in lithium metal solid-state batteries’ will be published in Nature on Wednesday 07 June 2023 at 16:00 (London time), 07 June 2023 at 11:00 (US Eastern Time) at https://www.nature.com/articles/s41586-023-05970-4. This link will go live when the embargo lifts. To view a copy of the article before this, contact Dr Caroline Wood: caroline.wood@admin.ox.ac.uk
About the University of Oxford
Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the seventh year running, and number 2 in the QS World Rankings 2022. At the heart of this success are the twin-pillars of our ground-breaking research and innovation and our distinctive educational offer.
Oxford is world-famous for research and teaching excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research alongside our personalised approach to teaching sparks imaginative and inventive insights and solutions.
Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 200 new companies since 1988. Over a third of these companies have been created in the past three years. The university is a catalyst for prosperity in Oxfordshire and the United Kingdom, contributing £15.7 billion to the UK economy in 2018/19, and supports more than 28,000 full time jobs.
Journal
Nature
Method of Research
Experimental study
Article Title
Dendrite initiation and propagation in lithium metal solid-state batteries
Article Publication Date
7-Jun-2023