News Release

Global flash droughts expected to increase in a warming climate

Peer-Reviewed Publication

University of Oklahoma

Mena, OK

image: A figure showing the impact of a flash drought on a grassland in Oklahoma. The photos on the top row show the impact of the flash drought on the ecosystem compared with photos of the same area without flash drought impacts (bottom row). view more 

Credit: Image provided by the University of Oklahoma

The rapid development of unexpected drought, called flash drought, can severely impact agricultural and ecological systems with ripple effects that extend even further. Researchers at the University of Oklahoma are assessing how our warming climate will affect the frequency of flash droughts and the risk to croplands globally.

Jordan Christian, a postdoctoral researcher, is the lead author of the study, “Global projections of flash drought show increased risk in a warming climate,” published today in Nature Communications Earth and Environment.

“In this study, projected changes in flash drought frequency and cropland risk from flash drought are quantified using global climate model simulations,” Christian said. “We find that flash drought occurrence is expected to increase globally among all scenarios, with the sharpest increases seen in scenarios with higher radiative forcing and greater fossil fuel usage.”

Radiative forcing describes the imbalance of radiation where more radiation enters Earth’s atmosphere than leaves it. Like burning fossil fuels, these activities are among the most significant contributors to climate warming. The changing climate is expected to increase severe weather events from storms, flash flooding, flash droughts and more.

“Flash drought risk over cropland is expected to increase globally, with the largest increases projected across North America and Europe,” Christian said.

“CMIP6 models projected a 1.5 times increase in the annual risk of flash droughts over croplands across North America by 2100, from the 2015 baseline of a 32% yearly risk in 2015 to 49% in 2100, while Europe is expected to have the largest increase in the most extreme emissions scenario (32% to 53%), a 1.7 times increase in annual risk,” he said.

Jeffrey Basara, an associate professor in the School of Meteorology in the College of Atmospheric and Geographic Sciences and the School of Civil Engineering and Environmental Sciences in the Gallogly College of Engineering, is Christian’s faculty advisor and study co-author. Basara is the executive associate director of the hydrology and water security program and leads OU’s Climate, Hydrology, Ecosystems and Weather research group. The researchers have been investigating ways to improve flash drought identification and prediction since 2017, with multiple papers published in the Journal of Hydrometeorology, Environmental Research Letters and Nature Communications.

“This study continues to emphasize that agricultural producers, both domestic and abroad, will face increasing risks associated with water availability due to the rapid development of drought. As a result, socioeconomic pressures associated with food production, including higher prices and social unrest, will also increase when crop losses occur due to flash drought,” Basara said.

###

About the study 

Global projections of flash drought show increased risk in a warming climate,” published in Nature Communications Earth & Environment, May 25, 2023. The National Science Foundation provided funding for the study. In addition to lead author Jordan Christian, co-authors from the University of Oklahoma include professors Jeffrey Basara, Elinor Martin and Jason Furtado in the School of Meteorology as well as Xiangming Xiao in the Department of Biology and Microbiology. Other co-authors include Jason A. Otkin, University of Wisconsin–Madison; Lauren E. L. Lowman, Wake Forest University; Eric D. Hunt, University of Nebraska-Lincoln; and Vimal Mishra, Indian Institute of Technology.

About the University of Oklahoma Office of the Vice President for Research and Partnerships 

The University of Oklahoma is a leading research university classified by the Carnegie Foundation as the nation’s highest tier of research universities. Faculty, staff and students at OU are tackling global challenges and accelerating the delivery of practical solutions that impact society in direct and tangible ways through research and creative activities. OU researchers expand foundational knowledge while moving beyond traditional academic boundaries, collaborating across disciplines and globally with other research institutions as well as decision-makers and practitioners from industry, government and civil society to create and apply solutions for a better world. Find out more at ou.edu/research.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.