News Release

Increased risk of Alzheimer's disease due to exposure to polycyclic aromatic hydrocarbons

Peer-Reviewed Publication

Higher Education Press

Increased risk of Alzheimer's disease due to exposure to polycyclic aromatic hydrocarbons

image: None view more 

Credit: HIGHER EDUCATION PRESS LIMITED COMPANY

Polycyclic aromatic hydrocarbons (PAHs) are typical organic compounds found in cigarette smoke and vehicle exhaust. In addition, PAHs are produced from incomplete combustion of organic material and cooking. The highest concentrations of PM-bound PAHs ranged from 550 ng/m3 to 39000 ng/m3, were observed in Chinese kitchens, fire stations, and ships. Polycyclic aromatic hydrocarbons may combine with ultrafine particles (UFPs) in the air to form particle-bound PAHs. PM0.1 may adsorb large amounts of toxic organic compounds, and long-term exposure to indoor UFPs from cooking resulted in nervous responses by the human brain. PAHs were detected in the venous blood of people exposed to combustion by-products in rural areas of China at concentrations up to 762 ng/mL.

Aβ peptide contains various isoforms, with 42 aminoacids in its structure, is more abundant in human cerebrospinal fluid. It had been shown that chronic exposure of fish to benzo[a]pyrene (B[a]P) resulted in increased concentrations of Aβ42 peptide in the brain, leading to a decrease in their cognitive behavior, memory locomotor and motor activity. Aβ oligomers may contribute to the development of Alzheimer’s Disease (AD) by damaging neurons and disrupting electrochemical signals. Polycyclic aromatic hydrocarbons including phenanthrene, pyrene and B[a]P increased the aggregation kinetics of Aβ-peptide. Although the aggregation of Aβ peptides and the formation of oligomers are enhanced in the presence of PAHs, what are the molecular interactions between Aβ polypeptides and PAHs?

To answer this question, researchers from Nazarbayev University, Tokyo University of Science and their teams collaborated to explore and reveal the effect of polycyclic aromatic hydrocarbons as the major compounds of cooking particles on the structure of Aβ42 peptide. Their study reveals that Aβ polypeptides interact strongly with polycyclic aromatic hydrocarbons of different properties, and that these organic pollutants alter the structure of Aβ42 and promote the progression of Alzheimer's Disease. This study entitled “Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein” is published online in Frontiers of Environmental Science & Engineering in 2023.

In this study, the research team found that the structure of Aβ42 peptide monomer was affected by benzo[a]pyrene, nicotine and phenanthrene molecules, depending on their hydrophobicity, size, and H-bonding capacity. The secondary structure of Aβ42 peptide was changed by organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Their results also suggested that benzo[a]pyrene, nicotine, and phenanthrene might have effect on the progression of Alzheimer’s Disease.

This study successfully conducted atomic and molecular dynamics studies using GROMACS to study the structure of Aβ42 peptide monomer in the presence of benzo [a] pyrene, nicotine and phenanthrene. This work not only analyzed the effects of organic pollutants on the results of Aβ peptide monomer at the molecular level, but also provided guidance for the treatment of Alzheimer's disease, and increased attention to the neurodegenerative disorders caused by air pollution.

###

About Higher Education Press

Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China's top publishers in terms of copyright export volume and the world's top 50 largest publishing enterprises in terms of comprehensive strength.

The Frontiers Journals series published by HEP includes 28 English academic journals, covering the largest academic fields in China at present. Among the series, 12 have been indexed by SCI, 6 by EI, 2 by MEDLINE, 1 by A&HCI. HEP's academic monographs have won about 300 different kinds of publishing funds and awards both at home and abroad.

About Frontiers of Environmental Science & Engineering

Frontiers of Environmental Science & Engineering (FESE) is the leading edge forum for peer-reviewed original submissions in English on all main branches of environmental disciplines. FESE welcomes original research papers, review articles, short communications, and views & comments. All the papers will be published within 6 months since they are submitted. The Editors-in-Chief are Prof. Jiuhui Qu from Tsinghua University, and Prof. John C. Crittenden from Georgia Institute of Technology, USA. The journal has been indexed by almost all the authoritative databases such as SCI, Ei, INSPEC, SCOPUS, CSCD, etc.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.