News Release

Light and milling balls for greener chemical processes

Reactions without solvents

Peer-Reviewed Publication

Ruhr-University Bochum

Reactor

image: Light and mechanical energy interact in this reactor. view more 

Credit: © RUB, Marquard

Ball mills to replace solvents

Light is considered the ideal driving force of chemical reactions: it’s cheap, available in abundance and produces no waste. This is why light-driven, i.e. photochemical reactions are highly attractive for the production of chemical compounds. However, they are usually carried out in huge amounts of solvent. The latter are often toxic and generate hazardous waste in enormous quantities. Solid-state photochemical reactions without solvents could present an alternative. However, they have hardly been feasible so far, as they could only be mixed insufficiently and it was therefore not possible to scale them up to relevant quantities.

For photochemical reactions to take place, photons must first reach the starting materials. In order for the reaction to be quick and complete, it’s essential for it to be thoroughly mixed. In conventional reactions, this is ensured by the solvent: it dissolves the substances, makes them mobile and increases mass transport and diffusion. So far, no equivalent method has been available in the solid-state.

The researchers in Bochum used ball mills as reactors. Here, the starting materials are placed in vessels together with milling balls and shaken at high frequencies. This creates high-energy impacts that provide the mechanical energy for the reaction and thoroughly mix the substances. In a photoreactor that was specially adapted to the mill, the researchers managed to carry out the ball milling process under irradiation. This facilitated photo-mechanochemical synthesis of nanographenes in the solid-state.

Making reactions more sustainable

“This new process enabled us to carry out specific reactions and synthesise chemical substances in a much more sustainable way,” says Lars Borchardt. “We reduced reaction times by up to 56 per cent, while using 98 per cent less solvent than in equivalent syntheses done with conventional methods. Last but not least, the new photoreactor consumes almost 80 per cent less energy than conventional equipment.”


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.