Researchers at Mount Sinai, in collaboration with researchers at New York University, have published a study in Cell Host and Microbe that sheds light on the mechanisms behind the severity, or virulence, of methicillin-resistant Staphylococcus aureus (MRSA) blood stream infections. The study, published in January 2023, reveals that MRSA has undergone repeated mutations in the sarZ gene, a transcriptional regulator responsible for regulating virulence gene expression, leading to increased severity of blood stream infections in mouse models.
The widespread community-associated MRSA USA300 lineage has recently become a leading cause of hospital-associated bloodstream infections (BSIs). In the study, the researchers leveraged the recent introduction of USA300 into hospitals and its limited genetic variation to find mutations that contribute to its success in a new environment. The researchers found that USA300 infections exhibit altered virulence regulation. Using comparative genomics, they found the genes involved in this phenotype and discovered repeated and independent mutations in the transcriptional regulator sarZ. These mutations resulted in increased virulence of USA300 BSI isolates in a mouse model of BSI. The sarZ mutations resulted in increased expression and production of the surface protein ClfB, which was shown to be critical for the pathogenesis of USA300 BSI isolates.
MRSA is endemic across the United States and causes a wide range of diseases, including invasive bloodstream infections that are associated with high mortality. The study's goal was to identify potential mechanisms by which MRSA has adapted to invasive infection environments.
"The findings of our study provide a better understanding of the factors contributing to MRSA virulence and may ultimately help uncover new treatment approaches," said Harm van Bakel, PhD, Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai and one of the corresponding authors of the study. "The continued evolution of MRSA has changed the ways it regulates its virulence in bloodstream infections. Our work highlights the ongoing evolution of a major MRSA lineage and suggests that USA300 strains can optimize their fitness through altered regulation of virulence."
The study focused on the USA300 lineage of MRSA, and future work will investigate additional lineages as well as adaptations in methicillin-susceptible Staphylococcus aureus infections (MSSA).
###
About the Mount Sinai Health System
Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time — discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.
Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report's Best Hospitals, receiving high "Honor Roll" status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Report’s “Best Children’s Hospitals” ranks Mount Sinai Kravis Children's Hospital among the country’s best in several pediatric specialties. The Icahn School of Medicine at Mount Sinai is one of three medical schools that have earned distinction by multiple indicators: It is consistently ranked in the top 20 by U.S. News & World Report's "Best Medical Schools," aligned with a U.S. News & World Report "Honor Roll" Hospital, and top 20 in the nation for National Institutes of Health funding and top 5 in the nation for numerous basic and clinical research areas. Newsweek’s “The World’s Best Smart Hospitals” ranks The Mount Sinai Hospital as No. 1 in New York and in the top five globally, and Mount Sinai Morningside in the top 20 globally.
For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.
Journal
Cell Host & Microbe
Method of Research
Experimental study
Article Title
MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence regulation
Article Publication Date
20-Jan-2023
COI Statement
V.J.T. is an inventor on patents and patent applications filed by New York University, which are currently under commercial license to Janssen Biotech Inc. Janssen Biotech Inc. provides research funding and other payments associated with a licensing agreement.