News Release

Folding design leads to heart sensor with smaller profile

Drawing on the Japanese art of kirigami to contour to the human body to better detect electrocardiographic signals

Peer-Reviewed Publication

American Institute of Physics

Wireless, wearable, and flexible electrocardiogram monitor with app data

image: Wireless, wearable, and flexible electrocardiogram monitor with app data. view more 

Credit: Kuniharu Takei

WASHINGTON, March 29, 2022 -- As advances in wearable devices push the amount of information they can provide consumers, sensors increasingly have to conform to the contours of the body. One approach applies the principles of kirigami to give sensors the added flexibility.

Researchers want to leverage the centuries-old art of cutting paper into designs to develop a sensor sheet that can stretch and breathe with the skin while collecting electrocardiographic data. In Applied Physics Reviews, by AIP Publishing, the sensor made by researchers in Japan uses cuts in a film made of polyethylene terephthalate (PET) printed with silver electrodes to fit on a person's chest to monitor his or her heart.

"In terms of wearability, by applying kirigami structure in a PET film, due to PET deformation and bending, the film can be stretchable, so that the film can follow skin and body movement like a bandage," said author Kuniharu Takei, from Osaka Prefecture University. "In addition, since kirigami structure has physical holes in a PET film, skin can be easily breathed through the holes."

Unlike the related origami, which involves strictly paper folding, the art of kirigami extends its methods to paper cutting as well. Such a technique allows relatively stiff materials, like PET, to adapt to their surfaces.

As companies push for less noticeable wearables, attention has turned to optimizing picking out electrical signals from the heart out of background noise. Devices like the group's that ensure a snugger fit are an attractive solution.

The team found the optimal size of the sensor is roughly 200 square millimeters with a distance of 1.5 centimeters between electrodes. At that size, they were able to detect enough signal from the heart to be used in a smartphone app.

"The major challenge was how to realize the kirigami structure without using a precise alignment process between the silver electrodes and kirigami cutting," Takei said.

Their device with the sensor could accurately and reliably relay heart data across multiple people doing many types of everyday movements, such as walking or working while seated in a chair.

The group next aims to integrate more sensors to measure multiple types of data from the surface of the skin to help with early diagnosis of disease, including future medical trials.

"We understand that the new mechanism or new material developments makes better impact to the field," Takei said. "However, without improving the stability, it cannot be used for the practical applications, even if the sensor performance is excellent."

###

The article "Wireless, minimized, stretchable, and breathable electrocardiogram sensor system" is authored by Yan Xuan, Hyuga Hara, Satoko Honda, Yanpeng Li, Yusuke Fujita, Takayuki Arie, Seiji Akita, and Kuniharu Takei. The article will appear in Applied Physics Reviews on March 29, 2022 (DOI: 10.1063/5.0082863). After that date, it can be accessed at https://aip.scitation.org/doi/full/10.1063/5.0082863.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.