Osaka, Japan – Scientists at Osaka University have simulated heat transport at the smallest scales using a molecular dynamics computer simulation. By studying the motions of the individual particles that make up the boundary between a solid and a liquid, they have been able to calculate heat flux with unprecedented precision. This work may lead to significant improvements in our ability to fabricate nanoscale devices, as well as functional surfaces and nanofluidic devices.
The process by which heat is transferred at the point where a solid meets a liquid may seem to be a simple physics problem. Traditionally, macroscopic quantities - such as density, pressure, temperature, and heat capacity - were used to compute the rate at which thermal energy moves between materials. However, properly accounting for the motion of individual molecules, while observing the laws of conservation of energy and momentum, adds a great deal of complexity. Improved atomic-scale computer simulations would be invaluable to more accurately understanding a wide array of real-world applications, especially within the field of nanotechnology.
Now, a team of researchers at Osaka University has developed a new numerical technique to visualize a modeled heat flux at the atomic scale for the first time. “To fundamentally understand thermal transport through a solid–liquid interface, the transport properties of atoms and molecules must be considered,” first author of the study Kunio Fujiwara explains. “We modeled the heat flux near a solid–liquid interface region with sub-atomic spatial resolution by using classical molecular dynamics simulations. This allowed us to create images of the three-dimensional structure of the energy flow while heat was being transferred between the layers.”
Using the popular Lennard–Jones potential to calculate the interactions between adjacent atoms, the team found that the direction of heat flux strongly depends on the sub-atomic stresses in the structures of the solids or liquids.
“Before, there was no good way to visualize heat flux at atomic scale,” senior author Masahiko Shibahara says. “These findings should allow us to elucidate and modify the thermal transport based on the 3D heat flux configuration.”
This may allow for customized nanoscale manufacturing to be carried out more efficiently.
###
The article, “Thermal transport mechanism at solid˗liquid interface based on the heat flux detected at a sub-atomic spatial resolution,” was published in Physical Review E at DOI:
https://doi.org/10.1103/PhysRevE.105.034803
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.
Website: https://resou.osaka-u.ac.jp/en
Journal
Physical Review E
Method of Research
Computational simulation/modeling
Subject of Research
Not applicable
Article Title
Thermal transport mechanism at solid˗liquid interface based on the heat flux detected at a sub-atomic spatial resolution
Article Publication Date
24-Mar-2022