Reston, VA—By combining information from two advanced imaging techniques with clinical data, physicians can improve their prediction of heart attacks, according to research published in the January issue of The Journal of Nuclear Medicine. When assessed together in an artificial intelligence model, coronary 18F-NaF uptake on PET and quantitative coronary plaque characteristics on CT angiography were found to be complementary, strong predictors of heart attack risk in patients with established coronary artery disease, providing risk prediction superior to that of clinical data alone.
In everyday clinical practice, predicting a heart attack is challenging. The predicted likelihood of a heart attack typically is based on cardiovascular risk factors and scores, especially in patients with suspected coronary artery disease. However, in patients with confirmed coronary artery disease, cardiovascular risk factors and scores don’t always show the full picture.
“Recently, advanced imaging techniques have demonstrated considerable promise in determining which coronary artery disease patients are most at risk for a heart attack. These techniques include 18F-sodium fluoride (18F-NaF) PET, which assesses disease activity in the coronary arteries, and CT angiography, which provides a quantitative plaque analysis,” said Piotr J. Slomka, PhD, FACC, FASNC, FCCPM, director of Innovation in Imaging at Cedars-Sinai Medical Center in Los Angeles, California. “Our goal in the study was to investigate whether the information provided by 18F-NaF PET and CT angiography is complementary and could improve prediction of heart attacks with the use of artificial intelligence techniques.”
Nearly 300 patients with established coronary atherosclerosis participated in the study. All patients underwent a baseline clinical assessment with evaluation of their cardiovascular risk factor profile. All patients received hybrid coronary 18F-NaF PET and contrast CT coronary angiography. Machine learning—a type of artificial intelligence—was used to calculate a joint score for heart attack risk by incorporating key variables from the clinical assessment, 18F-NaF PET findings and quantitative CT variables.
The machine learning model showed substantial improvement in prediction of heart attack over clinical data alone. This approach demonstrated that 18F-NaF PET and CT angiography are complementary and additive, with the combination of both providing the most robust outcome prediction.
“18F-NaF PET combined with anatomical imaging provided by CT angiography has the potential to enable precision medicine by guiding the use of advanced therapeutic interventions,” noted Slomka. “Our study supports the use of artificial intelligence methods for integrating multimodality imaging and clinical data for robust prediction of heart attacks.”
This study was made available online in April 2021.
The authors of “Machine Learning with 18F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction” include Jacek Kwiecinski, Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, and Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland; Evangelos Tzolos, Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, and BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Mohammed N. Meah, Alastair J. Moss, Michelle C. Williams, David E. Newby and Marc R. Dweck, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Sebastien Cadet and Daniel S. Berman, Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California; Philip D. Adamson, Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Kajetan Grodecki and Damini Dey, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Nikhil V. Joshi, Bristol Heart Institute, University of Bristol, United Kingdom; Edwin J.R. van Beek, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom, and Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and Piotr J. Slomka, Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
Visit the JNM website for the latest research, and follow our new Twitter and Facebook pages @JournalofNucMed.
###
Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or rmaxey@snmmi.org.
About JNM and the Society of Nuclear Medicine and Molecular Imaging
The Journal of Nuclear Medicine (JNM) is the world’s leading nuclear medicine, molecular imaging and theranostics journal, accessed more than 13 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.
JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging—precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit www.snmmi.org.
Journal
Journal of Nuclear Medicine
Article Title
Machine Learning with 18F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction
Article Publication Date
1-Jan-2022
COI Statement
This research was supported in part by grants R01HL135557 and R01HL133616 from the National Heart, Lung, and Blood Institute/National Institute of Health (NHLBI/NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. David E. Newby (CH/09/002, RE/18/5/34216, RG/16/10/32375), Marc R. Dweck (FS/14/78/31020), Mohammed N. Meah (FS/19/ 46/34445), and Michelle C. Williams (FS/11/014, CH/09/002, FS/ ICRF/20/26002) are supported by the British Heart Foundation. Philip D. Adamson is supported by Heart Foundation of New Zealand Senior Fellowship (1844). Evangelos Tzolos was supported by a grant from Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. David E. Newby is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA) and Marc R. Dweck of the Sir Jules Thorn Award for Biomedical Research Award (2015). Edwin J.R. van Beek is supported by SINAPSE (Scottish Imaging Network – A Platform of Scientific Excellence). Nikhil V. Joshi is supported by the Medical Research Council through MRC Clinical Academic Research Partnership grant (MR/ T005459/1).