News Release

Zum Lernen und zum Selbstschutz: Wie sich das Gehirn anpasst

Göttinger Forscherinnen untersuchen Wirkung bestimmter Enzyme im gesunden und kranken Gehirn

Peer-Reviewed Publication

University of Göttingen

image: Neuronale Plastizität wird durch den enzymatischen Abbau der extrazellulären Matrix des Gehirns gefördert. Diese fluoreszenzmikroskopische Aufnahme zeigt Nervenzellen aus der Sehrinde einer Maus, die von rot markierten ECM Molekülen umhüllt sind. Obere Reihe: niedrige Vergrößerung, untere Reihe: höhere Vergrößerung. view more 

Credit: Siegrid Löwel

Das Gehirn ist ein äußerst komplexes und anpassungsfähiges Organ. Die Anpassungsfähigkeit nimmt jedoch mit zunehmendem Alter ab, da sich neue Verknüpfungen zwischen Nervenzellen im Gehirn weniger leicht bilden. Die Plastizität des Gehirns wird geringer. Damit sich ein Gehirn umorganisieren kann, zum Beispiel, um zu lernen, oder um Verletzungen des zentralen Nervensystems wie nach einem Schlaganfall zu kompensieren, muss ein dichtes Molekülnetzwerk zwischen den Nervenzellen – die sogenannte extrazelluläre Matrix – gelockert werden. Dies ist die Aufgabe verschiedenster Enzyme, die letztlich regeln, wie plastisch oder stabil das Gehirn ist. Was passiert, wenn bestimmte Enzyme blockiert werden, haben Forscherinnen der Universität Göttingen an Mäusen untersucht. Je nachdem, ob das Gehirn gesund oder krank ist, hatte die Blockade gegenteilige Wirkungen. Die Ergebnisse sind in der Fachzeitschrift The Journal of Neuroscience erschienen.

Damit ein Lebewesen lernen kann, muss sein Gehirn plastisch sein. Das heißt, die Nervennetzwerke müssen sich verändern können. Wichtig hierfür sind Makromoleküle der extrazellulären Matrix, die sich zwischen den Nervenzellen befinden. Im Laufe des Lebens nimmt die „Festigkeit“ dieser extrazellulären Matrix zu, wodurch vermutlich die bestehenden Verbindungen zwischen den Nervenzellen stabilisiert werden und Erlerntes verfestigt wird. Wird nun eine neue Erfahrung gemacht, muss die extrazelluläre Matrix wieder gelockert werden, damit neue Verknüpfungen entstehen können. Dieses Verhältnis von Stabilität und Plastizität im Gehirn wird in der Matrix mithilfe von Enzymen wie beispielsweise Matrixmetalloproteinasen (MMPs) geregelt, die die extrazelluläre Matrix aufspalten und damit „lockern“ können. Ein Team der Universität Göttingen konnte jetzt in einer neuen Studie zeigen, dass die Blockade der Matrixmetalloproteinasen MMP2 und MMP9 unterschiedliche Effekte haben kann, je nachdem, ob das Gehirn krank oder gesund ist.

Um die neuronale Plastizität zu messen, ließen die Wissenschaftlerinnen erwachsene Mäuse für mehrere Tage nur über ein Auge sehen und registrierten die daraus resultierenden Aktivitätsänderungen in der Sehrinde der Tiere. In einem ersten Experiment untersuchten sie die Anpassungsfähigkeit der Sehrinde gesunder Mäuse, bei denen die Enzyme MMP2 und MMP9 blockiert wurden (mit SB3CT). In der Folge war auch die neuronale Plastizität blockiert. In einem zweiten Experiment forschte das Team an Mäusen unmittelbar nach einem Schlaganfall. Es war bereits bekannt, dass Schlaganfälle kurzfristig zu einem starken Anstieg der MMPs führen. Und hier erzeugte die gezielte, kurzfristige Blockade der Enzyme MMP2 und MMP9 einen gegenteiligen Effekt: Die durch den Schlaganfall stark reduzierte Plastizität wurde wiederhergestellt, die Blockade der Enzyme MMP2 und MMP9 hatte somit eine klare therapeutische Wirkung.

„Anders als in vielen anderen Studien wurden bei unserem Studienaufbau die ,matrixabbauenden‘ Enzyme erst nach dem experimentellen Schlaganfall blockiert, wodurch eine Behandlung simuliert wurde“, sagt Prof. Dr. Siegrid Löwel von der Abteilung für Systemische Neurobiologie der Universität Göttingen. „Wir zeigen zudem, dass die MMPs im Gehirn sehr gut überwacht und exakt eingestellt werden müssen. Ein zu geringes Level im gesunden Gehirn verhindert neuronale Plastizität und ein zu hohes Level – wie nach einem Schlaganfall – blockiert ebenfalls die neuronale Plastizität.“

Die Studie wurde im Rahmen des DFG-Sonderforschungsbereichs 889 „Zelluläre Mechanismen sensorischer Verarbeitung“ durchgeführt.

Originalveröffentlichung: Ipek Akol, Evgenia Kalogeraki, Justyna Pielecka-Fortuna, Merle Fricke and Siegrid Löwel. MMP2 and MMP9 Activity is Crucial for Adult Visual Cortex Plasticity in Healthy and Stroke-affected Mice. The Journal of Neuroscience (2022) 42(1):16–32; published ahead of print: 11 November 2021, JN-RM-0902-21; DOI: https://doi.org/10.1523/JNEUROSCI.0902-21.2021

Kontakt:

Prof. Dr. Siegrid Löwel

Georg-August-Universität Göttingen

Abteilung für Systemische Neurobiologie

& Göttingen Campus-Institut für Dynamik biologischer Netzwerke (CIDBN)

Von-Siebold-Straße 6, 37075 Göttingen

Tel: 0551 3926037/36

E-Mail: sloewel@gwdg.de

http://systemsneuroscience.uni-goettingen.de/

 


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.