News Release

New regulator of liver metabolism discovered

Enzyme retinol saturase controls liver glucose handling

Peer-Reviewed Publication

Charité - Universitätsmedizin Berlin

Accumulation of Glucose Sensor ChREBP in the Nucleus After Glucose Stimulation

image: (Retinol saturase expressed (left). Retinol saturase depleted (right). (confocal microscopy, liver cells). view more 

Credit: M.Schupp

All cells can adapt their metabolic activity with respect to the availability of various sources of energy, such as glucose. This vital ability makes cells more efficient at absorbing and utilizing these substances, in addition to protecting them against the negative effects of overload. However, exposure to chronically-high glucose levels can result in an adaptive response which is damaging to cells and promoting diseases.

Led by Prof. Dr. Michael Schupp, head of the Molecular Pharmacology and Metabolism Working Group at Charité's Institute of Pharmacology, the researchers showed that the enzyme retinol saturase plays a role in the adaptive processes found in liver cells. By studying levels of the enzyme in both slim and obese participants, the researchers found that levels increase in line with body weight. They also analyzed the cells' metabolic pathways and their metabolic adaptation to glucose levels after reducing the enzyme's abundance. The negative metabolic effects associated with excess exposure to glucose were significantly less pronounced in cells that had been modified in this way.

Discussing the results of the study, Prof. Schupp concludes: "The inactivation of retinol saturase activity may offer a new approach to the treatment of metabolic liver disease and its associated problems, such as fatty liver disease and dyslipidemia." As a next step, the researchers are planning to identify the mechanisms involved, and to test whether other cell types also need the enzyme to adapt to changing glucose levels.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.