The Rosalind Franklin Institute, a new national centre for interdisciplinary science, announces its first capital investment today. The namesake of the institute, the pioneering X-ray crystallographer Rosalind Franklin, was one of the key figures in the discovery of the structure of DNA, and used a technique with roots in physics and technology to transform life science. The Institute will follow in this spirit, developing unique new techniques and tools based on advances in engineering and physical science and applying them for the first time to biological problems.
£1.55m has been awarded through the Institute to fund the development of a time-resolved high-resolution transmission electron microscope, the first stage of a £10m project to build a ground-breaking microscope which will be the first of its kind in the world. The project is led by Professor Angus Kirkland, Oxford University, and leader of the Correlated Imaging theme at The Rosalind Franklin Institute.
This follows the Government's announcement in February 2017 confirming that the Rosalind Franklin Institute has been funded through £103 million investment through its modern Industrial Strategy. Research and development is at the heart of the Industrial Strategy, and the Rosalind Franklin Institute is building on the UK's world-leading reputation in these fields and will effectively bring together academia and industry.
Universities and Science Minister, Sam Gyimah, said:
"As part of our Industrial Strategy we committed a £100 million to establish the Rosalind Franklin Institute. This first grant will develop just what the Institute and our Industrial Strategy seeks to achieve - world-leading science that can help create the next generation of life-saving drugs.
"Through our Industrial Strategy, we are also supporting vital research and innovation that will help create the high value, high skilled jobs that will make Britain fit for the future."
JEOL, the manufacturer of the equipment for this first stage, and global leaders in the manufacture of electron microscopes, are making a significant investment in this research partnership with the Institute. Shaun Quill, MD of JEOL (U.K.) Ltd, the supplier of the equipment, which will be developed by JEOL Ltd in Tokyo, says 'This microscope will be one of the most advanced electron microscopes in the world, linking the technology of electron microscopy across physical and life sciences. Electron Microscopy has made enormous progress in the last decade and it is great to see the UK investing in the forefront of future developments.'
The project will significantly advance the electron microscopy for life sciences within the UK, a technique which allows visualisation of structures at near atomic scale in time and space. The ability to quickly image structures before they damage will allow researchers to understand how drugs interact with their targets and enable understanding of many biological processes in exquisite detail.
Professor Kirkland says 'This equipment from JEOL will be unique in the UK, and will enable the development of a microscope which will be the first of its kind. We are excited to be working on key challenges in imaging, which will bring disruptive technology to both biologists and physical scientists.'
The equipment produced will be located in the Rosalind Franklin Institute hub at Harwell, planned to open in 2020, which will house a portfolio of scientific equipment, enabling transformative breakthroughs in life science through interdisciplinary research. Until then, activities will take place within a network of universities and research centres across the UK.
Dr Judy Kim, a Principal Staff Scientist from The Department of Materials at Oxford University, who will lead the technological delivery of the equipment says 'The equipment will take around two years to deliver, but we are already very excited about the new types of experiments we will be able to carry out. We can expect research on everything from the effects of chemotherapy to malaria treatments and understanding the step-by-step evolution of these processes in time.'
One of the key characteristics of the Rosalind Franklin Institute will be close partnership between researchers from different disciplines and between academia and industry. Professor Kirkland leads the Correlated Imaging theme for the Institute, working towards the imaging of complex biological structures ranging from the centimetre to 10 picometer (ten trillionths of a meter, or 10/1,000,000,000,000m) scale. The ability to understand the same structure across many length scales will bring paradigm-changing advances in our understanding of diseases and drug development.
###
About the Rosalind Franklin Institute
The Rosalind Franklin Institute is a new national institute dedicated to bringing about transformative changes in life science through interdisciplinary research and technology development. The Institute will bring together researchers in life sciences, physical sciences, and engineering, to develop disruptive new technologies designed to tackle major challenges in health and life sciences.
The Institute is an independent organisation funded by the UK government through the Engineering and Physical Sciences Research Council (EPSRC) and governed by a joint venture of by ten UK universities, and will have its central hub at the Harwell Campus, delivered by the Science and Technology Facilities Council (STFC). The hub will house a unique portfolio of scientific tools and researchers from both industry and academia. The Institute will work nationally with equipment and researchers located in spokes distributed throughout the partner network of universities.
The Institute will work with industrial and academic partners from across the UK, fostering interdisciplinary research with real impact in imaging, diagnostics, drug development, and many more fields.
About JEOL
The JEOL Group is a leading company in state-of-the-art scientific instruments in the fields of nanotechnology, semiconductors, biotechnology, life sciences, forensics, optical communication and green technology. Based on a philosophy of "Creativity and Research & Development" since being founded in 1949, JEOL has been offering a range of solutions designed from a user's perspective.
JEOL products include scientific instrumentation and industrial equipment, based on five major product groups; Electron Optics, Analytical Instruments, Semiconductor Equipment, Thin Film Coating Systems and Medical Equipment.
About Oxford University MPLS
The Mathematical, Physical and Life Sciences Division (MPLS) is one of four academic divisions at the University of Oxford, representing the non-medical sciences. Oxford is one of the world's leading universities for science, and MPLS is at the forefront of scientific research across a wide range of disciplines. Research in the mathematical, physical and life sciences at Oxford was rated the best in the UK in the 2014 Research Excellence Framework (REF) assessment.
The Engineering and Physical Sciences Research Council (EPSRC)
As the main funding agency for engineering and physical sciences research, our vision is for the UK to be the best place in the world to Research, Discover and Innovate.
By investing £800 million a year in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future economic development in the UK and improvements for everyone's health, lifestyle and culture.
We work collectively with our partners and other Research Councils on issues of common concern via Research Councils UK.