Amsterdam, July 14, 2015 - Flu vaccines delivered using microneedles that dissolve in the skin can protect people against infection even better than the standard needle-delivered vaccine, according to new research published in Biomaterials. The authors of the study, from Osaka University in Japan, say their dissolvable patch - the only vaccination system of its kind - could make vaccination easier, safer and less painful.
According to the World Health Organization, immunization prevents an estimated 2-3 million deaths every year. The continued threat of pandemics such as H1N1 swine flu and emerging infectious diseases such as Ebola makes vaccine development and mass vaccination a priority for global healthcare. Most vaccines are injected under the skin or into the muscle using needles. While this is an effective delivery method, it requires medical personnel with technical skills and brings the risk of needle-related diseases and injuries.
The new microneedle patch is made of dissolvable material, eliminating needle-related risks. It is also easy to use without the need for trained medical personnel, making it ideal for use in developing countries, where healthcare resources are limited.
"Our novel transcutaneous vaccination using a dissolving microneedle patch is the only application vaccination system that is readily adaptable for widespread practical use," said Professor Shinsaku Nakagawa, one of the authors of the study from Osaka University. "Because the new patch is so easy to use, we believe it will be particularly effective in supporting vaccination in developing countries."
The new microneedle patch - MicroHyala - is dissolvable in water. The tiny needles are made of hyaluronic acid, a naturally occurring substance that cushions the joints. When the patch is applied like a plaster, the needles pierce the top layer of skin and dissolve into the body, taking the vaccine with them.
The researchers compared the new system to traditional needle delivery by vaccinating two groups of people against three strains of influenza: A/H1N1, A/H3N2 and B. None of the subjects had a bad reaction to the vaccine, showing that it is safe to use in humans. The patch was also effective: people given the vaccine using the microneedles had an immune reaction that was equal to or stronger than those given the vaccine by injection.
"We were excited to see that our new microneedle patch is just as effective as the needle-delivered flu vaccines, and in some cases even more effective," said Professor Nakagawa.
Previous research has evaluated the use of microneedles made of silicon or metal, but they were not shown to be safe. Microneedles made from these materials also run the risk of breaking off in the skin, leaving tiny fragments behind. The new dissolvable patch eliminates this risk, as the microneedles are designed to dissolve in the skin.
"We have shown that the patch is safe and that it works well. Since it is also painless and very easy for non-trained people to use, we think it could bring about a major change in the way we administer vaccines globally," said Professor Nakagawa.
###
Read more on Elsevier Connect.
http://www.elsevier.com/connect/could-dissolvable-microneedles-replace-injected-vaccines
Article details:
"Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch" by Sachiko Hirobe, Hiroaki Azukizawa, Takaaki Hanafusa, Kazuhiko Matsuo, Ying-Shu Quan, Fumio Kamiyama, Ichiro Katayama, Naoki Okada, Shinsaku Nakagawa (doi: 10.1016/j.biomaterials.2015.04.007). The article appears in Biomaterials, Volume 57 (July 2015), published by Elsevier. http://www.sciencedirect.com/science/article/pii/S0142961215003543
A copy of the paper is available to credentialed journalists upon request, contact Elsevier's Newsroom at newsroom@elsevier.com or +31 20 4853564.
About Biomaterials
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. http://www.journals.elsevier.com/biomaterials/
About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries. http://www.elsevier.com
Journal
Biomaterials