News Release

Astronomers map vast void in our cosmic neighborhood

Peer-Reviewed Publication

University of Hawaii at Manoa

Local Void

image: Shaded gray contours outline the extent of the Local Void, while blue dots show major mass constituents (large galaxies, galaxy groups, and clusters). The curved blue lines show the derived motions of these massive objects, after removing the overall expansion of the universe. The most important galaxy congregations are given special symbols, like the red ball identifying the Virgo Cluster. The dominant pattern of motions revealed by the orbits is a flow away from the Local Void. view more 

Credit: UH

An astronomer from the University of Hawaii Institute for Astronomy and an international team published a new study that reveals more of the vast cosmic structure surrounding our Milky Way galaxy.

The universe is a tapestry of galaxy congregations and vast voids. In a new study being reported in The Astrophysical Journal, Brent Tully's team applies the same tools from an earlier study to map the size and shape of an extensive empty region they called the Local Void that borders the Milky Way galaxy. Using the observations of galaxy motions, they infer the distribution of mass responsible for that motion, and construct three-dimensional maps of our local Universe.

Galaxies not only move with the overall expansion of the universe, they also respond to the gravitational tug of their neighbors and regions with a lot of mass. As a consequence, relative to the overall expansion they are moving towards the densest areas and away from regions with little mass - the voids.

Although we live in a cosmic metropolis, back in 1987 Tully and Richard Fisher noted that our Milky Way galaxy is also at the edge of an extensive empty region that they called the Local Void. The existence of the Local Void has been widely accepted, but it remained poorly studied because it lies behind the center of our galaxy and is therefore heavily obscured from our view.

Now, Tully and his team have measured the motions of 18,000 galaxies in the Cosmicflows-3 compendium of galaxy distances, constructing a cosmographic map that highlights the boundary between the collection of matter and the absence of matter that defines the edge of the Local Void. They used the same technique in 2014 to identify the full extent of our home supercluster of over one hundred thousand galaxies, giving it the name Laniakea, meaning "immense heaven" in Hawaiian.

For 30 years, astronomers have been trying to identify why the motions of the Milky Way, our nearest large galaxy neighbor Andromeda, and their smaller neighbors deviate from the overall expansion of the Universe by over 600 km/s (1.3 million mph). The new study shows that roughly half of this motion is generated "locally" from the combination of a pull from the massive nearby Virgo Cluster and our participation in the expansion of the Local Void as it becomes ever emptier.

###

An 11-minute video demonstrating the shape and extend of these cosmic structures is available online at https://vimeo.com/326346346

Interactive visualizations that allow the user to rotate, pan, and zoom maps of the mass distribution can be found at

https://sketchfab.com/models/f0a44df256aa4faf93391887d66010e2

https://sketchfab.com/models/78885b3d303d4b6e99cfe099b43929fb

The paper was published on July 22, 2019 in The Astrophysical Journal, and is available at https://doi.org/10.3847/1538-4357/ab2597.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.