News Release

Neuronen bei der Arbeit zusehen: Jenaer Wissenschaftler machen bislang verborgene Prozesse im Gehirn sichtbar

Peer-Reviewed Publication

Leibniz-Institute of Photonic Technology

Live Deep Brain Imaging with a Single Multimode Fiber

video: Neuronal somata, neuronal processes and blood cells deep inside deep brain areas of a living mouse. The images were obtained via a single multimode fiber. view more 

Credit: Sergey Turtaev, Ivo T. Leite, Tristan Altwegg-Boussac, Janelle M.P. Pakan, Nathalie L. Rochefort, Tomas Cizmar

Dünner als ein menschliches Haar ist die Sonde, mit der die Forscher in tief liegende Hirnregionen blicken können wie durch ein Schlüsselloch. Durch eine einzelne optische Faser werden hochaufgelöste Bilder übertragen. Indem sie mit einer neuartigen holographischen Methode die Ausbreitung des Lichts in der multimodalen Glasfaser steuern, erforschten die Wissenschaftler ein kompaktes System zur Fluoreszenz-Bildgebung, das in doppelter Hinsicht einen Fortschritt markiert: So ist ihr Werkzeug nicht nur deutlich kleiner als die üblichen, auf Gradientenindex-Linsen oder Faserbündeln basierenden Endoskopen, es erzielt auch eine höhere Auflösung.

„Wir freuen uns sehr, dass unsere Technologie erste Schritte hin zur praktischen Anwendung in den Neurowissenschaften macht", sagt Dr. Sergey Turtaev vom Leibniz-IPHT, Hauptautor des Beitrags. „Erstmals haben wir gezeigt, dass es möglich ist, tiefe Hirnregionen eines lebenden Tiers minimal-invasiv zu untersuchen und gleichzeitig hochauflösende Bilder zu erhalten", ergänzt Dr. Ivo T. Leite. Die Wissenschaftler gehören der neu gegründeten Arbeitsgruppe für holographische Endoskopie um IPHT-Wissenschaftler Tomas Cizmar an, der das holographische Verfahren zur Bildgebung durch eine einzige Faser entwickelte. Auf diese Weise ist es seinem Team nun gelungen, Bilder von Gehirnzellen und neuronalen Prozessen im visuellen Kortex und Hippocampus mit zu erhalten. Detaillierte Beobachtungen in diesen Bereichen sind entscheidend, um die Sinneswahrnehmung zu erforschen, herauszufinden, wie sich Erinnerungen bilden und wie schwere neuronale Erkrankungen wie Alzheimer entstehen.

Neuronale Netzwerke in diesen inneren Regionen bei der Arbeit zu beobachten, ist mit derzeitigen Untersuchungsmethoden nicht möglich, ohne das umgebende Gewebe schwer zur schädigen. Zu groß sind die üblichen Endoskopen mit ihrem Bündel aus hunderten Glasfasern, um in diese empfindlichen Hirnregionen vorzudringen -- und zu winzig wiederum die neuronalen Strukturen, um sie mit nicht-invasiven bildgebenden Verfahren wie etwa der Magnetresonanztomographie (MRT) sichtbar zu machen.

Neurowissenschaftlern eröffnet das Verfahren neue Möglichkeiten, um zu erforschen, was im Gehirn von Tieren passiert, während diese ihrerseits gerade ihre Umgebung erkunden oder eine neue Aufgabe erlernen. „Wir können die Aktivität der neuronalen Schaltkreise offenlegen, ohne ihre Aktivität zu stören", erläutert Projektpartnerin Dr. Nathalie Rochefort von der Universität Edinburgh. Prof. Tomᚠ?ižmár vom Leibniz-IPHT sieht sich durch die Ergebnisse bestärkt, weiter daran zu arbeiten, moderne Mikroskopietechniken für den Einsatz in den Neurowissenschaften zu erschließen, um mit ihrer Hilfe besser zu verstehen, wie unser Gehirn funktioniert.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.