Los dos metros de ADN -estirado- que contienen las células humanas se están continuamente enredando y desenredando para permitir la accesibilidad a la información genética: cuando un gen se expresa para generar una proteína, se separan las dos cadenas del ADN para dar acceso a toda la maquinaria necesaria para esta expresión, lo que resulta en una acumulación excesiva de enrollamiento que debe posteriormente resolverse. El trabajo que publica ahora el equipo liderado por Felipe Cortés, jefe del Grupo de Topología y Roturas del ADN del Centro Nacional de Investigaciones Oncológicas (CNIO), en colaboración con Silvia Jimeno González, profesora de la Universidad de Sevilla y jefa del grupo Transcripción y Procesamiento del mRNA del Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), demuestra que este superenrollamiento característico de la propia estructura del ADN controla la expresión génica, y no es meramente un daño colateral que debe resolverse, tal y como estaba considerado hasta la fecha. Los resultados los recoge la revista Cell Reports.
Estos resultados constituyen un primer paso para entender el superenrollamiento como un importante regulador del genoma y no solo como un problema asociado al metabolismo del ADN, declara Cortés.
Según escriben los autores en el trabajo, esta regulación se da fundamentalmente sobre unos genes concretos, que son aquellos que se inducen muy rápidamente, del orden de cientos de veces en minutos, como los genes que responden a estrés, señales de proliferación celular, hormonas o aquellos que participan en la estimulación neuronal. TOP2A, regulador de la expresión de genes de respuesta inmediata
Las topoisomerasas son proteínas que actúan sobre el ADN relajando este estrés topológico mediante la eliminación tanto de un exceso (superenrollamiento positivo) como un defecto (superenrollamiento negativo) en el número de vueltas de la doble hélice respecto a su estructura normal relajada.
Los investigadores demuestran en este estudio que la topoisomerasa TOP2A elimina el superenrollamiento negativo en los promotores de los genes, y por lo tanto causa un aumento en el número de vueltas de las hebras de ADN en estas regiones. Esto dificulta la apertura de la doble hélice, lo que impide el avance de la ARN polimerasa y la deja preparada para disparar rápidamente la activación génica cuando la célula lo necesita.
Las topoisomerasas se consideran facilitadoras de la activación génica, aunque nosotros aquí demostramos que la topoisomerasa TOP2A actúa en las regiones promotoras de genes como c-FOS [regulador de la proliferación celular] para mantenerlos reprimidos, pero creando un contexto topológico particular que hace que se puedan activar rápidamente para poder dar una respuesta inmediata a estímulos, apunta Cortés.
Los investigadores adelantan también la posibilidad de otras funciones del superenrollamiento del ADN, como facilitar una conformación tridimensional del genoma que favorezca interacciones entre elementos reguladores para la expresión génica.
Esta nueva forma de regulación genómica a través del superenrollamiento pone en relieve su posible implicación en procesos fundamentales para el funcionamiento de la célula, y que requieren cambios profundos en los programas de expresión génica, como son la diferenciación o la reprogramación celular, así como en la transformación y la progresión tumorales.
El trabajo abre, además, la vía de emplear inhibidores de topoisomerasas para modular estos procesos y respuestas celulares, y quizás incluso como posibles terapias antitumorales, concluye Cortés.
El trabajo ha sido financiado por el Ministerio de Ciencia e Innovación, el Instituto de Salud Carlos III, la Junta de Andalucía, el Consejo Europeo de Investigación y la Asociación Española Contra el Cáncer.
###
Journal
Cell Reports