News Release

Gas pressure depletion and seismicity

New study published in Geology

Peer-Reviewed Publication

Geological Society of America

Clay in grain boundary

image: A sectioned quartz-quartz grain contact revealing a thin clay film (ribbon-like structure). Compaction and shear of these thin clay films has played a key role in controlling compaction of the Groningen gas reservoir to date. view more 

Credit: Microstructures were obtained by B.A. Verberne.

Boulder, Colo., USA: Europe's largest gas field, the Groningen field in the Netherlands, is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is key to forecasting system behavior and seismic hazard.

Bart Verberne and colleagues sought evidence for a role of inelastic deformation through comparative microstructural analysis of unique drill-core, recovered from the seismogenic center of the field in 2015, 50 years after gas production started, versus core recovered before production (1965). Quartz grain fracturing, crack healing, and stress-induced Dauphiné twinning are equally developed in the 2015 and 1965 cores, with the only measurable effect of gas production being enhanced microcracking of sparse K-feldspar grains in the 2015 core.

Interpreting these grains as strain markers, Verberne and colleagues suggest that reservoir compaction involves elastic strain plus inelastic compression of weak clay films within grain contacts.

###

FEATURED ARTICLE
Drill core from seismically active sandstone gas reservoir yields clues to internal deformation mechanisms
Berend A. Verberne; Suzanne J.T. Hangx; Ronald P.J. Pijnenburg; Maartje F. Hamers; Martyn R. Drury; Christopher J. Spiers

CONTACT:
Suzanne Hangx,
s.j.t.hangx@uu.nl,
Utrecht University, Dept. of Earth Sciences, Utrecht.

Paper URL:
https://pubs.geoscienceworld.org/gsa/geology/article/doi/10.1130/G48243.1/593344/Drill-core-from-seismically-active-sandstone-gas

GEOLOGY articles are online at http://geology.geoscienceworld.org/content/early/recent. Representatives of the media may obtain complimentary articles by contacting Kea Giles at the e-mail address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in articles published. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.
https://www.geosociety.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.