News Release

BTI receives grant to support development of cold-tolerant corn

Researchers will investigate benefits of 'high-Rubisco' corn plants

Grant and Award Announcement

Boyce Thompson Institute

A Corn Field in Upstate New York

image: Corn plants can't take cold weather, but a grant to support the development of corn with excess photosynthetic enzymes may yield more productive, cold-tolerant plants. view more 

Credit: (Patricia Waldron/Boyce Thompson Institute)

ITHACA, NY--David Stern, president of the Boyce Thompson Institute, received a three-year grant totaling $459,950 from the U.S. Department of Agriculture for research to boost photosynthesis in corn plants, to make them more productive, especially in cold temperatures.

Researchers in the Stern laboratory have generated a type of corn that produces high levels of a key enzyme in photosynthesis called Rubisco. Typically, Rubisco levels drop in the cold, but plants with extra Rubisco appear to be more tolerant of cold weather--a characteristic that could be advantageous to northern corn farmers. Many researchers have attempted to improve upon the Rubisco enzyme or to increase Rubisco quantities in crop plants, but have had little success. The USDA grant will enable the Stern laboratory members to better understand how these plants continue to thrive in the cold, and whether excess Rubisco offers any additional benefits to plants, such as higher yield.

Corn plants that can withstand the cold would have a longer growing season, potentially enabling farmers to harvest twice. Additionally, earlier plantings will result in larger plants during the peak of summer, allowing for greater productivity.

"We are delighted to have this opportunity to explore the consequences of increasing Rubisco content in corn," said Stern. "Photosynthetic capacity and stress tolerance are two key factors in determining crop yield and also factor into sustainability of agricultural practices."

In prior experiments, former postdoctoral researcher Katia Wostrikoff inserted additional copies of genes into the corn plant that code for the large and small protein subunits that make up the Rubisco enzyme. Research associate Leila Feiz then discovered a chaperone protein that helps assemble the subunits into a functional enzyme, and inserted an extra copy of that gene as well. Analysis of the resulting plants by Coralie Salesse-Smith, a graduate student in the Stern laboratory, showed that the assembled Rubisco localizes in the correct cells of the plant and accumulates to up to 55 percent higher levels than in traditional corn plants.

As part of the newly funded project, Salesse-Smith will work with research fellow Robert Sharwood of the Australian National University in Canberra at the Center of Excellence in Translational Photosynthesis. At the center, the team will use specialized techniques to investigate whether the high-Rubisco corn plants are engaging in greater rates of photosynthesis, and will examine the activity of other related enzymes.

In future work, the researchers will explore the mechanisms within the plant that help it to withstand cold weather and how possessing extra Rubisco affects their growth and metabolism.

###

To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website at http://bti.cornell.edu.

Connect online with BTI at http://www.facebook.com/BoyceThompsonInstitute and http://www.twitter.com/BTIScience.

About Boyce Thompson Institute

Boyce Thompson Institute is a premier plant science research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health. Throughout this work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.