News Release

Flow physics could help forecasters predict extreme events

Researchers are studying a tornado's song and other 'doors to danger' in an increasingly chaotic world

Peer-Reviewed Publication

American Physical Society

Storm Chasing Truck with Infrasound Sensor

image: Brian Elbing (left) holds a microphone with storm chaser Val Castor (right) in front of his storm chasing truck, in which the researchers mounted an infrasound sensor for monitoring tornadoes. view more 

Credit: Brian Elbing

VIRTUAL MEETING (CST), November 22, 2020 -- About 1,000 tornadoes strike the United States each year, causing billions of dollars in damage and killing about 60 people on average. Tracking data show that they're becoming increasingly common in the southeast, and less frequent in "Tornado Alley," which stretches across the Great Plains. Scientists lack a clear understanding of how tornadoes form, but a more urgent challenge is to develop more accurate prediction and warning systems. It requires a fine balance: Without warnings, people can't shelter, but if they experience too many false alarms, they'll become inured.

One way to improve tornado prediction tools might be to listen better, according to mechanical engineer Brian Elbing at Oklahoma State University in Stillwater, in the heart of Tornado Alley. He doesn't mean any sounds audible to human ears, though. As long ago as the 1960s, researchers reported evidence that tornadoes emit signature sounds at frequencies that fall outside the range of human hearing. People can hear down to about 20 Hertz--which sounds like a low rumble--but a tornado's song likely falls somewhere between 1 and 10 Hertz.

Brandon White, a graduate student in Elbing's lab, discussed their recent analyses of the infrasound signature of tornadoes at the 73rd Annual Meeting of the American Physical Society's Division of Fluid Dynamics.

Elbing said these infrasound signatures had seemed like a promising avenue of research, at least until radar emerged as a frontrunner technology for warning systems. Acoustic-based approaches took a back seat for decades. "Now we've made a lot of advances with radar systems and monitoring, but there are still limitations. Radar requires line of sight measurements." But line of sight can be tricky in hilly places like the Southeast, where the majority of tornado deaths occur.

Maybe it's time to revisit those acoustic approaches, said Elbing. In 2017, his research group recorded infrasound bursts from a supercell that produced a small tornado near Perkins, Oklahoma. When they analyzed the data, they found that the vibrations began before the tornado formed.

Researchers still know little about the fluid dynamics of tornadoes. "To date there have been eight trusted measurements of pressure inside a tornado, and no classical theory predicts them," said Elbing. He doesn't know how the sound is produced, either, but knowing the cause isn't required for an alarm system. The idea of an acoustics-based system is straightforward.

"If I dropped a glass behind you and it shattered, you don't need to turn around to know what happened," said Elbing. "That sound gives you a good sense of your immediate environment." Infrasound vibrations can travel over long distances quickly, and through different media. "We could detect tornadoes from 100 miles away."

Members of Elbing's research group also described a sensor array for detecting tornadoes via acoustics and presented findings from studies on how infrasound vibrations travel through the atmosphere. The work on infrasound tornado signatures was supported by a grant from NOAA.

Other sessions during the Division of Fluid Dynamics meeting similarly addressed ways to study and predict extreme events. During a session on nonlinear dynamics, MIT engineer Qiqi Wang revisited the butterfly effect, a well-known phenomena in fluid dynamics that asks whether a butterfly flapping its wings in Brazil could trigger a tornado in Texas.

What's unclear is whether the butterfly wings can lead to changes in the longtime statistics of the climate. By investigating the question computationally in small chaotic systems, he found that small perturbations can, indeed, effect long-term changes, a finding that suggests even small efforts can lead to lasting changes in the climate of a system.

During the same session, mechanical engineer Antoine Blanchard, a postdoctoral researcher at MIT, introduced a smart sampling algorithm designed to help quantify and predict extreme events--like extreme storms or cyclones, for example. Extreme events occur with low probability, he said, and therefore require large amounts of data, which can be expensive to generate, computationally or experimentally. Blanchard, whose background is in fluid dynamics, wanted to find a way to identify outliers more economically. "We're trying to identify those dangerous states using as few simulations as possible."

The algorithm he designed is a kind of black box: Any dynamical state can be fed as an input, and the algorithm will return a measure of the dangerousness of that state.

"We're trying to find the doors to danger. If you open that particular door, will the system remain quiescent, or will it go crazy?" asked Blanchard. "What are the states and conditions--like weather conditions, for example--that if you were to evolve them over time could cause a cyclone or storm?"

Blanchard said he's still refining the algorithm but hopes to start applying it to real data and large-scale experiments soon. He also said it may have implications beyond the weather, in any system that produces extreme events. "It's a very general algorithm."

###

HIGHLIGHTED ABSTRACTS

Infrasound Measurements of Tornadoes and Other Severe Storm Events at Close Range
POSTER: 3:10 p.m. CST, Sunday, November 22, 2020
ABSTRACT: http://meetings.aps.org/Meeting/DFD20/Session/E03.5
CONTACT: Bryce Lindsey, bryce.lindsey@okstate.edu

System Identification Approaches to Modeling of Tornado Acoustic Mechanisms
POSTER: 5:45 p.m. CST, Sunday, November 22, 2020
ABSTRACT: http://meetings.aps.org/Meeting/DFD20/Session/H09.5
CONTACT: Brandon White, Brandon.c.white@okstate.edu

Can a Butterfly in Brazil Control the Climate of Texas?
POSTER: 8:45 a.m. CST, Monday, November 23, 2020
ABSTRACT: http://meetings.aps.org/Meeting/DFD20/Session/K07.3
CONTACT: Qiqi Wang, qiqi@mit.edu

Mapping the Geography of Extreme Events with Optimal Sampling
POSTER: 8:45 a.m. CST, Monday, November 23, 2020
ABSTRACT: http://meetings.aps.org/Meeting/DFD20/Session/K07.2
CONTACT: Antoine Blanchard, ablancha@mit.edu

USEFUL LINKS

Meeting Website: https://apsapp.bravuratechnologies.com/aps-web/?event=dfd2020
Scientific Program: http://meetings.aps.org/Meeting/DFD20/APS_epitome
Registration: https://my.aps.org/NC__Event?id=a0lf400000BEYymAAH

Complimentary registration is available to credentialed media for the express purpose of gathering and reporting news and information from the meeting. If you have not previously obtained APS press credentials (i.e. attended other APS meetings as press or receive the APS journals tip sheet), please submit a request at http://info.aps.org/press.

ABOUT DFD

The Division of Fluid Dynamics of the American Physical Society, established in 1947, exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic, and gaseous states of matter under all conditions of temperature and pressure.

ABOUT APS

The American Physical Society (APS) is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. Society offices are located in College Park, Maryland (Headquarters), Ridge, New York, and Washington, DC.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.