WASHINGTON, Sept. 22– Light-matter interaction at the nanometer scale has turned into a very fast-growing field of research known as nano-optics. To highlight breakthroughs in the specific areas of nano-optics known as nanoplasmonics and metamaterials, the editors of the Optical Society's (OSA) open-access journal Optical Materials Express (OMEx) have published a special Focus Issue on Nanoplasmonics and Metamaterials (http://www.opticsinfobase.org/ome/virtual_issue.cfm?vid=145). The issue is organized and edited by Guest Editor Romain Quidant of the Institute of Photonic Sciences and the Catalan Institute for Research in Advanced Studies, Spain, and OMEx Associate Editor Vladimir Drachev of Purdue University, USA.
"Research in nanoplasmonics and metamaterials is very well representative of the tremendous increase of activities in nano-optics," said Drachev. "Both are expected to have a strong impact on our society, especially in the areas of chip-scale and high-integration density optical interconnects, advanced materials for photovoltaics, and bio-medical applications."
The first main motivation behind such enthusiasm for nano-optics comes from the potential of the field to extend concepts and functionalities of conventional optics down to the nanometer scale; toward ultra-compact photonic devices that are not limited by diffraction. Beyond miniaturization, an additional motivation arises from the rich new physics involved when matter is downsized to dimensions that are much smaller than the light wavelength.
"At this very exiting stage of research in nanoplasmonics and metamaterials, further advances are in part conditioned by the development of new optical materials with improved properties, as well as advances in nanofabrication techniques to increase the quality of constitutive nano-units," said Quidant. "We have seen a noteworthy advance in materials research the past few years. As such, we put together this special issue now to address these advances and highlight the future of this dynamic field."
Summary
Nanoplasmonics studies the optical properties of nanoscale systems supporting surface plasmons, and gained a lot of attention after the discovery of surface-enhanced Raman scattering (SERS) in the 1970s. Benefiting from recent advances in nanofabrication techniques, research in nanoplasmonics has recently been very successful in using noble metal (especially silver and gold) nanostructures to control light fields well beyond the limit of diffraction. Such control has already contributed to enhanced light interaction with tiny amounts of matter down to the single-molecular level.
In the field of metamaterials, researchers aim at designing ensembles of sub-wavelength units that behave as effective materials featuring properties that are not found in nature. Artificial materials have recently regained a huge interest triggered by provocative theoretical proposals such as superlensing and invisibility at optical frequencies, as well as the successful experimental demonstration of negative refraction.
Key Findings & Select Papers
About Optical Materials Express
Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. For more information, visit www.OpticsInfoBase.org/OMEx.
About OSA
Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.
Journal
Optical Materials Express