News Release

Das Geheimnis starker Zähne: Nanostrukturen unter Spannung

Wissenschaftler entdecken Grundlagen für neue keramische Materialien

Peer-Reviewed Publication

Helmholtz-Zentrum Berlin für Materialien und Energie

Strong Teeth: Nanostructures under Stress Make Teeth Crack Resistant

image: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. view more 

Credit: Credit: JB Forien @Charité

Diese Pressemitteilung ist verfügbar auf Englisch.

Einem interdisziplinären Team um Forscher der Charité - Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen. Dennoch gilt es als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals durch Untersuchungen an den Synchrotronquellen BESSY II am HZB und an der European Synchrotron Radiation Facility ESRF, Grenoble, zeigen konnten: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

In den Ingenieurswissenschaften werden innere Vorspannungen bewusst eingesetzt, um Materialien für technische Anwendungen zu verstärken. Nun scheint es, dass auch die Evolution diesen Trick gut kennt und in unseren Zähnen nutzt. Denn anders als Knochen können Zähne Brüche nicht selbst „reparieren". Dabei sind sie beim Kauen und Beißen enormen Kräften ausgesetzt, die zu Rissen führen können. Wie solche Risse im Zahndentin begrenzt werden, war bislang nicht ganz klar.

Mit Synchrotronstrahlung Spannungen in der Biostruktur analysiert

Nun haben Wissenschaftlerinnen und Wissenschaftler des Julius-Wolff-Instituts der Charité Berlin zusammen mit Teams der Technischen Universität Berlin, dem MPI für Kolloid- und Grenzflächenforschung, Potsdam und dem Technion - Israel Institute of Technology, Haifa die Biostruktur von Dentin im Detail untersucht. Dentin besteht aus mineralischen Nanopartikeln und dentalen Tubuli, die in ein dichtes Netz aus Kollagenfasern eingebettet sind. Sie ermittelten in-situ an der mySpot-Anlage von BESSY II am HZB, Berlin, den inneren Stress der mineralischen Nanopartikel und analysierten ihre lokale Ausrichtung an der „Nano-Imaging-Facility" der European Synchrotron Radiation Facility (ESRF) in Grenoble, Frankreich.

Kollagenfasern sorgen für Kompression

Ihre Messungen an Dentinproben zeigten: Wenn die winzigen Kollagenfasern schrumpfen, werden die eingebetteten Mineralpartikel zunehmend zusammen gedrückt. "Durch Veränderungen der Feuchtigkeit konnte unsere Gruppe demonstrieren, wie der Stress in den Mineralpartikeln zunimmt", erklärt Dr. Paul Zaslansky vom Julius Wolff-Institut der Charité Berlin. "Dies trägt dazu bei, die Entstehung von Rissen zu verhindern; Dabei sorgt die Art und Weise der Kompression auch dafür, dass die innersten Bereiche des Zahns weitgehend vor Rissen geschützt bleiben, so dass die empfindliche Pulpa nicht beschädigt wird". Dadurch helfen die inneren Spannungen, die Entstehung und Ausbreitung von Rissen zu begrenzen.

Anregungen für keramische Zahnfüllungen

Die Wissenschaftler untersuchten auch die Frage, was geschieht, wenn die Verbindung zwischen den Mineralpartikeln und den Kollagenfasern geschwächt wird, etwa durch Erhitzung. Dabei stellten sie fest, dass die Belastbarkeit von Dentin abnimmt. "Wir glauben, dass die inneren Spannungen zwischen Mineralpartikeln und Kollagenfasern im Gleichgewicht sein müssen. Das ist entscheidend für eine dauerhafte Belastbarkeit von Zähnen", sagt Jean-Baptiste Forien, wissenschaftlicher Mitarbeiter an der Charité. Dies könnte erklären, warum künstlicher Zahnersatz in der Regel weitaus weniger belastbar ist als gesunde Zahnsubstanz: die keramischen Materialien sind einfach zu "passiv" gegenüber Belastung, da ihnen die Mechanismen fehlen, die in der natürlichen Zahnsubstanz für Stabilität sorgen. "Vielleicht liefert diese Arbeit einige Anregungen für die Entwicklung besserer keramischer Materialien für die Zahnbehandlung", hofft Zaslansky.

###

Die Arbeiten fanden im Rahmen des DFG-Schwerpunktprogramms SPP 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials"statt.

Die Ergebnisse sind in Nanoletters publiziert. DOI: 10.1021/acs.nanolett.5b00143

Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, Paul Zaslansky. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015 May 29.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.