News Release

New hope for hormone resistant breast cancer

Peer-Reviewed Publication

Garvan Institute of Medical Research

Dr. Andrew Stone, Garvan Institute for Medical Reseach

image: This is Dr. Andrew Stone, a breast cancer researcher from Sydney's Garvan Institute for Medical Reseach. view more 

Credit: Garvan Institute of Medical Research

A new finding provides fresh hope for the millions of women worldwide with oestrogen receptor positive breast cancer. Australian scientists have shown that a specific change, which occurs when tumours become resistant to anti-oestrogen therapy, might make the cancers susceptible to treatment with chemotherapy drugs.

Seventy percent of breast cancer patients have oestrogen receptor positive cancer, and most patients respond well to anti-oestrogen therapies, for a few years at least. Within 15 years, however, 50% will relapse and eventually die from the disease.

Dr Andrew Stone, Professor Susan Clark and Professor Liz Musgrove, from Sydney's Garvan Institute of Medical Research, in collaboration with scientists from Cardiff University, have demonstrated that the BCL-2 gene becomes epigenetically 'silenced' in resistant tumours. This process is potentially detectable in the blood, providing a diagnostic marker. Their findings are now online in the international journal Molecular Cancer Therapetics.

Epigenetics involves biochemical changes in our cells that directly impact our DNA, making some genes active, while silencing others. Epigenetic events include DNA methylation, when a methyl group - one carbon atom and three hydrogen atoms - attaches to a gene, determining the extent to which it is 'switched on' or 'switched off'.

Dr Stone and colleagues have shown in human disease, as well as in several different cell models, that BCL-2 is silenced in oestrogen-resistant tumours by DNA methylation.

"The main purpose of the BCL-2 gene is to keep cells alive, so when the gene is silenced, cells become more vulnerable to chemotherapy," said Dr Stone.

"The next step will be to test our findings in clinical studies. We propose that if the BCL-2 gene is silenced, patients with oestrogen receptor positive breast cancer would benefit from combination therapy. In other words, tamoxifen could be used in combination with a chemotherapy drug, to kill off vulnerable tumour cells."

"Excitingly, this is something that could be implemented into clinical practice very quickly, since the technology now exists to profile methylation of BCL-2 in all patients – both oestrogen responsive and oestrogen resistant patients. In addition, the proposed chemotherapy drugs are already in use."

"If such a test were to be implemented, we believe it could help patients much earlier – hopefully shutting down tumours at an early stage."

###

NOTES TO EDITORS

Oestrogen is a hormone produced by all women, and drives reproduction, menstruation and menopause. Many breast cells have oestrogen receptors on their surface. When one of those cells becomes malignant and starts to multiply, an oestrogen receptor positive tumour develops. Typically these tumours are fed by high concentrations of oestrogen in the bloodstream, triggered by circumstances such as late first pregnancy, not breastfeeding, or too much body fat.

At present, there are three different therapeutic strategies for oestrogen receptor positive breast cancer: blocking the body's production of oestrogen with aromatase inhibitors; preventing oestrogen from 'binding' to the oestrogen receptor by 'binding' the drug tamoxifen instead; and destroying the oestrogen receptor completely.

Tamoxifen, now the gold standard treatment, became available in the 1970s.

Endocrine therapies, including tamoxifen, are inexpensive and well-tolerated, and are usually given for 5 years. Over time, however, many tumours become resistant to therapy. When one form of treatment starts to fail, a second is put in place, and then a third. Response times shrink, and tumours start to spread to other parts of the body, usually the brain, lungs, liver and bone.

At this late stage, there is little that can be done to help someone, as the brain, lungs, liver and bone are parts of the body that cannot be biopsied or operated upon.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.