News Release

Wyss Institute receives up to $37 million from DARPA to integrate organ chips to mimic the human body

New instrument would accelerate assessment of drug safety and efficacy, and inform regulatory decision-making

Grant and Award Announcement

Wyss Institute for Biologically Inspired Engineering at Harvard

Wyss Institute Organ-on-Chip

image: Each individual organ-on-chip is composed of a clear flexible polymer –about the size of a computer memory stick- that contains hollow microfluidic channels lined by living human cells. view more 

Credit: The Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University today announced that it has entered into a Cooperative Agreement worth up to $37 million with the Defense Advanced Research Projects Agency (DARPA) to develop an automated instrument that integrates 10 human organs-on-chips to study complex human physiology outside the body. This effort builds on the Institute's past breakthroughs in which Institute researchers engineered microchips that recapitulate the microarchitecture and functions of living organs, such as the lung, heart, and intestine. Each individual organ-on-chip is composed of a clear flexible polymer containing hollow microfluidic channels lined by living human cells about the size of a computer memory stick. Because the microdevices are translucent, they provide a window into the inner-workings of human organs without having to invade a living body.

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented "human-on-a-chip" will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

Several U.S. agencies are working together to help safeguard Americans from deliberate chemical, biological, radiological, and nuclear threats, as well as from emerging infectious diseases, by drastically accelerating the drug development process. As an example, DARPA, the National Institutes of Health (NIH), and the U.S. Food and Drug Administration (FDA) are actively collaborating to develop cutting edge technologies to predict drug safety. The Wyss project was selected under the DARPA Defense Sciences Office (DSO) Microphysiological Systems Program and will be administered through a Cooperative Agreement by the Army Research Office (ARO) and DARPA.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed "has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development."

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Core Faculty member, Kevin Kit Parker, Ph.D., will co-lead this five-year project. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children's Hospital, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS). Parker is the Tarr Family Professor of Bioengineering and Applied Physics at SEAS. The organ-on-chip program will also draw on the Institute's leading scientists and engineers, including Geraldine Hamilton, Ph.D., Anthony Bahinski, Ph.D., and Daniel Levner, Ph.D., who have extensive industrial experience in drug development, safety pharmacology, and systems engineering, to accelerate translation of this technology from the lab into the marketplace where it can best help the people who need it most. Other key collaborators participating in the project include John Wikswo, Ph.D., University Professor of Physics at Vanderbilt University, and Andrzej Przekwas, Ph.D., from CFD Research Corporation.

###

About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Boston Children's Hospital, Brigham and Women's Hospital, , Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Tufts University, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.