研究の背景
惑星系が形成される土台:原始惑星系円盤
近年、太陽以外の星のまわりで、多様性に富む数多くの惑星が発見されてきました。しかし、それらの形成過程は謎のままであり、特に、天王星・海王星のような巨大氷惑星の形成過程は、よく分かっていません。
このような謎を解くためには、「原始惑星系円盤」と呼ばれる、若い恒星を取り巻く円盤状の天体を、望遠鏡を使って観測することが重要です。この円盤は、冷たいガスや塵で構成されており、惑星の材料になると考えられています。原始惑星系円盤を詳しく調べることで、多様な惑星系がどのように生まれてくるのかを調べることができます。
うみへび座TW星
うみへび座TW星(図1参照)は、水素核融合反応を起こす前の段階にある、年齢およそ1000万歳の若い恒星です。地球から175光年ほどの距離にあり、このような若い恒星の中では最も太陽系に近い恒星です。うみへび座TW星は太陽と同じくらいの重さで、地球が属するこの太陽系と直接比べることができるため、太陽系がどのように形成されたのかを調べるための良い観測対象といえます。
この恒星の周囲に原始惑星系円盤が存在することは過去の観測から知られていました。最近になって、この円盤に複数の「隙間」があることが発見されました。原始惑星系円盤内に惑星が形成されると「隙間」ができることは理論的に予想されており、観測された隙間の位置は太陽系における木星や海王星の軌道とよく一致しています。そこでは、太陽系にあるのと似た惑星が形成されていることを伺わせます。したがって、このような隙間がどんな構造をしているのか詳しく調べれば、惑星が形成される過程やその様子を明らかにすることができるはずです。
観測の特徴
アルマ望遠鏡による2周波数での電波観測
茨城大学の塚越崇 助教を中心とする研究チームは、うみへび座TW星を取り巻く原始惑星系円盤の構造を詳しく調べるため、大型電波干渉計「アルマ望遠鏡」(図2)を使用した観測を行いました。円盤内にある極低温(氷点下250℃程度)の塵は目に見える光では輝いていませんが、電波では輝いていることが知られています。アルマ望遠鏡を用いて電波で観測することにより、光では見ることのできない円盤内の冷たい塵を見ることができます。
今回の研究では、145GHzと233GHzという異なる二つの周波数の電波で観測をしています。異なる周波数の電波の強度は塵の大きさに関係しているため、二つの周波数の電波強度を比較することで、円盤内で塵の大きさが場所によってどのように異なっているのかを調べることが出来るのです。
観測の結果
円盤の隙間には小さい塵が満ちていた
今回、我々が行ったアルマ望遠鏡による観測でも、これまで見つかっていた隙間があることが確かめられました(図3、[1])。今回の研究では、最も顕著な22天文単位にある隙間に着目しました。この隙間における2つ周波数の電波強度の比(強度比)は、隙間の周囲に比べて有意に高くなっていることが分かりました(図4参照)。塵が小さいほど、それが放つ電波の強度比は高くなるので、強度比が高いところでは、大きい塵が少なくなっていることを示しています。つまり、着目した隙間では大きい塵が少なくなり、小さい塵だけが多く残っていることが明らかになりました。一般的に、大きい塵は数ミリメートル程度、小さい塵は数マイクロメートル程度の大きさだと考えられていますが、今回の観測だけでは具体的な塵の大きさを精度よく決定することは出来ません。この点を明らかにする観測が、今後計画されています(「今後の研究の発展」の項を参照)。
円盤の隙間では巨大氷惑星が生まれているかもしれない
これまでに成された理論的な研究によると、円盤の中に惑星が存在し、それが隙間を作っている場合、円盤のガスと塵の相互作用によって大きめの塵が隙間の中からはじき出され、隙間の中には小さい塵のみが残ると予想されています。今回の観測では、それとよく一致した結果が得られました。
では、どのくらいの重さの惑星が存在するのでしょうか?別の理論的な研究(例えば、2015年に示された金川らの研究)では、隙間の幅と深さ(周囲の明るい部分との光度比)と、それを作った惑星の重さとの関連が予想されています。この研究結果を利用し、今回の観測結果から、隙間を作っている惑星の重さを見積もります。画像から分かる明るさの分布は、実際の塵の分布とは厳密には異なりますが、今回の場合、これらはほぼ同一のものとして考えることができます。観測で得られたこの隙間の幅はおよそ5天文単位でした。また、隙間の中と外とでの明るさの比は、平均で0.5程度でした。よって、今回の観測結果と、上述の理論研究とを比較してみると、図5のように、データは理論研究による予想線上にあり、惑星の重さが海王星より少し重いくらいであることが分かりました。加えて、中心星から22天文単位という距離は、太陽系では天王星と海王星の軌道の間に相当します。うみへび座TW星が太陽とほぼ同じ重さであることを考えると、ここで誕生している惑星は天王星や海王星とよく似た巨大氷惑星である可能性が高いと我々は考えています。
今後の研究の発展
本研究によって、うみへび座TW星の原始惑星系円盤で発見された半径22天文単位の隙間は、その中に惑星が存在する可能性が極めて高いことがわかりました。一方で、異なる方法で惑星形成のさまざまな可能性を探ることも重要です。我々の研究グループでは、本研究結果を受けて、アルマ望遠鏡の次期観測に繋げています。
一つは電波偏光を捉える観測です。最近の理論計算では、電波偏光を観測することで、塵の大きさをより正確に見積もることが可能であることが示されています。したがって、電波偏光が観測できれば、本研究とは別の方法で塵の大きさを調べることができます。もう一つは、隙間でのガスの量を調べる観測です。円盤のほとんどはガス成分であり、形成される惑星の性質もガスの量に依存します。ガスの分布を調べることで、より正確に惑星質量を見積もることができるでしょう。
###
注
[1] うみへび座TW星はこれまでにもアルマ望遠鏡で観測されてきました。たとえば2016年3月には、米国のグループがアルマ望遠鏡を用いて高い解像度で、うみへび座TW星を観測し、円盤に複数の隙間を発見したことを発表しました(参考:2016年3月31日 最新情報「地球に似た軌道を持つ惑星の誕生現場を若い星のまわりで初めて観測」)。しかし、この観測は1周波数のみを用いたものであり、塵の大きさまではわかりませんでした。
Journal
The Astrophysical Journal Letters