News Release

Simpler model gets to the point with proteins

Rice University scientists introduce technique to study dynamic processes with greater accuracy

Peer-Reviewed Publication

Rice University

Cecilia Clementi, Rice University

image: Cecilia Clementi. view more 

Credit: Jeff Fitlow/Rice University

HOUSTON - (June 6, 2018) - Computational models have come a long way in their ability to simulate the most basic biological processes, such as how proteins fold. A new technique created by Rice University researchers should enable scientists to model larger molecules with greater accuracy than ever.

The Rice lab of computational chemist Cecilia Clementi has developed a molecular modeling framework that can more accurately reproduce experimental results with simple coarse-grained models used to simulate protein dynamics.

The framework, Observable-driven Design of Effective Molecular Models (ODEM), incorporates available experimental data in the definition of a coarse-grained simulation model. For a given coarse-grained model, repeating the simulation with incremental changes in the model parameters improves the algorithm's ability to predict, for instance, how a protein will find its functional form.

The work led by Clementi and Rice graduate student and lead author Justin Chen appears in the American Chemical Society's Journal of Chemical Theory and Computation.

"Understanding proteins, especially their dynamics, is essential to understanding life," Clementi said. "There are two complementary ways to do this: either through simulation or experimentation. In an experiment, you measure something that's real, but you're very limited in the quantities you can measure directly. It's like putting together a puzzle with only a very few pieces."

She said simulations allow researchers to look at every aspect of protein dynamics, but models that incorporate the properties of every atom can take supercomputers months or years to compute, even if the proteins themselves fold in seconds in vivo. For faster results, scientists often use coarse-grained models, simplified simulations in which a few effective "beads" represent groups of atoms in a protein.

"In very simple models you have to make strong approximations, and as a consequence, the results may differ from reality," Clementi said. "We combine these two approaches and use the power of simulation in a way that reproduces the experiments. That way, we get the best of both worlds."

Acquiring initial data is not an issue, Chen said. "There is a wealth of experimental data about proteins already, so it's not hard to find," he said. "It's just a matter of finding a way to model that data in a simulation."

Clementi said the data can come from any one or a combination of sources like Förster resonance energy transfer (FRET), mutagenesis or nuclear magnetic resonance. The computational framework takes advantage of Markov models to combine multiple short protein simulations to obtain the equilibrium distribution of protein configurations that is used in ODEM. "Markov models let us combine and explore different parts of the configurational space of a protein," she said. "It's a clever way to divide and conquer."

The key, according to the researchers, is to include only as much physical detail as necessary to model the process accurately.

"There are models that are very accurate, but they are computationally too expensive," Clementi said. "There's too much information in those models, so you don't know what are the most important physical ingredients.

"In our simplified models, we include only the physical factors we think are important," she said. "If by using ODEM the simulations improve their agreement with experiments, it means that the hypothesis was correct. If they do not, then we know there are ingredients missing."

The researchers found their technique can reveal unanticipated molecular properties. In the process of testing their algorithm, the researchers discovered a new detail about the folding mechanism of FiP35, a common WW domain protein that is a piece of larger signaling and structural proteins. FiP35, with only 35 amino acids, is well-understood and often used in folding studies.

The ODEM model of FiP35, based on experimental data from simulated FRET results, revealed several regions where localized frustration forced changes in the folding process. Their analysis showed the interactions are important to the process and likely evolutionarily conserved, but they said the data leading to that conclusion would never have appeared if the simulated FRET data were not used in the coarse-grained model.

"Now we're scaling it up to larger systems, like 400-residue proteins, about 10 times larger than our test protein," Chen said. "You cannot do full-atom simulations of these large motions and long time scales, but if you do 10 or 11 iterations of a coarse-grained model with ODEM, they take only a few hours. That's a huge reduction of the time it would take a person to see reasonable results."

###

Co-authors of the paper are former Rice undergraduate Jiming Chen (now at the University of Illinois Urbana-Champaign pursuing a Ph.D. in chemical engineering) and Giovanni Pinamonti, a postdoctoral researcher at the Free University of Berlin. Clementi is a professor of chemistry and of chemical and biomolecular engineering, Rice's Wiess Career Development Chair in the Department of Chemistry, a senior scientist at the Center for Theoretical Biological Physics at Rice, the Einstein Visiting Fellow at the Free University in Berlin and co-director of the National Science Foundation (NSF)-supported Molecular Sciences Software Institute.

The NSF, the Welch Foundation and the Einstein Foundation Berlin supported the research. Computational resources were supplied by Rice's NSF-supported DAVinCI supercomputer administered by Rice's Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology, and by the Department of Mathematics and Computer Science at Free University.

Read the abstract at https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00187.

The computational framework is freely available at https://github.com/ClementiGroup/pyODEM.

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Clementi Research Group: http://clementiresearch.rice.edu

Chemistry at Rice: http://chemistry.rice.edu

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Images for download:

http://news.rice.edu/files/2018/06/0604_MODEL-1-WEB-2hlldeo.jpg
Förster resonance energy transfer can measure the distance between two probes during the dynamic movement of a protein. The Observable-driven Design of Effective Molecular Models method developed by scientists at Rice University can adjust a protein model to improve the agreement between experimental data and simulated results. (Credit: Illustration by Clementi Research Group/Rice University)

http://news.rice.edu/files/2018/05/0604_MODEL-2-WEB-2eyoyv9.jpg
Rice Professor Cecilia Clementi and graduate student Justin Chen. (Credit: Rice University)

http://news.rice.edu/files/2018/05/0604_MODEL-3-WEB-292momt.jpg
Cecilia Clementi. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.