News Release

Chinese "artificial sun" sets milestone record towards fusion power generation

Business Announcement

Chinese Academy of Sciences Headquarters

The Experimental Advanced Superconducting Tokamak

image: 

The Experimental Advanced Superconducting Tokamak achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds.

view more 

Credit: Image by HFIPS

The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s "artificial sun," has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.

The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Scienece (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.

The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occurr in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.

Scientists worldwide have dedicated over 70 years to this ambitious goal. However, generating electricity from a nuclear fusion device involves overcoming key challenges, including reaching temperatures exceeding 100 million degrees Celsius, maintaining stable long-term operation, and ensuring precise control of the fusion process.

"A fusion device must achieve stable operation at high efficiency for thousands of seconds to enable the self-sustaining circulation of plasma, which is essential for the continuous power generation of future fusion plants," said SONG Yuntao, ASIPP director and also vice president of HFIPS. He said that the recent record is monumental, marking a critical step toward realizing a functional fusion reactor.

According to GONG Xianzu, head of the EAST Physics and Experimental Operations division, several systems of the EAST device have been upgraded since the last round of experiments. For example, the heating system, which previously operated at the equivalent power of nearly 70,000 household microwave ovens, has now doubled its power output while maintaining stability and continuity.

Since its inception in 2006, EAST has served as an open testing platform for both Chinese and international scientists to conduct fusion-related experiments and research.

China officially joined the International Thermonuclear Experimental Reactor (ITER) program in 2006 as its seventh member. Under the agreement, China is responsible for approximately 9 percent of the project's construction and operation, with ASIPP serving as the primary institution for the Chinese mission.

ITER, currently under construction in southern France, is set to become the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor upon completion.

In recent years, EAST has consistently achieved groundbreaking advancements in high-confinement mode, a fundamental operational mode for experimental fusion reactors like ITER and the future China Fusion Engineering Test Reactor (CFETR). These accomplishments provide invaluable insights and references for the global development of fusion reactors.

"We hope to expand international collaboration via EAST and bring fusion energy into practical use for humanity," said SONG.

In Hefei, Anhui Province, China, where EAST is loacated, a new generation of experimental fusion research facilities is currently under construction. These facilities aim to further accelerate the development and application of fusion energy.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.