News Release

Rice researchers unlock new insights into tellurene, paving the way for next-gen electronics

Peer-Reviewed Publication

Rice University

Shengxi Huang

image: 

Shengxi Huang is an associate professor of electrical and computer engineering and materials science and nanoengineering at Rice University, and corresponding author on a study published in Science Advances. (Photo courtesy of Shengxi Huang/Rice University)

view more 

Credit: Image courtesy of Shengxi Huang/Rice University.

HOUSTON – (Jan. 14, 2025) – To describe how matter works at infinitesimal scales, researchers designate collective behaviors with single concepts ⎯ like calling a group of birds flying in sync a “flock” or “murmuration.” Known as quasiparticles, the phenomena these concepts refer to could be the key to next-generation technologies.

In a recent study published in Science Advances, a team of researchers led by Shengxi Huang, associate professor of electrical and computer engineering and materials science and nanoengineering at Rice, describe how one such type of quasiparticle ⎯ polarons ⎯ behaves in tellurene, a nanomaterial first synthesized in 2017 that is made up of tiny chains of tellurium atoms and has properties useful in sensing, electronic, optical and energy devices.

“Tellurene exhibits dramatic changes in its electronic and optical properties when its thickness is reduced to a few nanometers compared to its bulk form,” said Kunyan Zhang, a Rice doctoral alumna who is a first author on the study. “Specifically, these changes alter how electricity flows and how the material vibrates, which we traced back to the transformation of polarons as tellurene becomes thinner.”

A polaron forms when charge-carrying particles such as electrons interact with vibrations in the atomic or molecular lattice of a material. Imagine a phone ringing in a packed auditorium during a lecture: Just as the audience shifts their gaze collectively to the source of the interruption, so do the lattice vibrations adjust their orientation in response to charge carriers, organizing themselves around an aura of polarization ⎯ hence the name of the quasiparticle.

Depending on the thinness of the layer of tellurene, the magnitude of this response ⎯ i.e., the span of the aura ⎯ can vary significantly. Understanding this polaron transition is important because it reveals how fundamental interactions between electrons and vibrations can influence the behavior of materials, particularly in low dimensions.

“This knowledge could inform the design of advanced technologies like more efficient electronic devices or novel sensors and help us understand the physics of materials at the smallest scales,” said Huang, who is a corresponding author of the paper.

The researchers hypothesized that as tellurene transitions from bulk to nanometer thickness, polarons change from large, spread-out electron-vibration interactions to smaller, localized interactions. Computations and experimental measurements backed up this scenario.

“We analyzed how the vibration frequencies and linewidths varied with thickness and correlated these with changes in electrical transport properties, complemented by the structural distortions observed in X-ray absorption spectroscopy,” Zhang said. “Furthermore, we developed a field theory to explain the effects of enhanced electron-vibration coupling in thinner layers.”

The team’s comprehensive approach yielded deeper insight into thickness-dependent polaron dynamics in tellurene than previously available. This was possible due to both improvements in the advanced research techniques deployed and the recent development of high-quality tellurene samples.

“Our findings highlight how polarons impact electrical transport and optical properties in tellurene as it becomes thinner,” Zhang said. “In thinner layers, polarons localize charge carriers, leading to reduced charge carrier mobility. This phenomenon is crucial for designing modern devices, which are continually becoming smaller and rely on thinner materials for functionality.”

On the one hand, reduced charge mobility can limit the efficiency of electronic components, especially for applications that require high conductivity such as power transmission lines or high-performance computing hardware. On the other hand, this localization effect could guide the design and development of high-sensitivity sensors and phase-change, ferroelectric, thermoelectric and certain quantum devices.

“Our study provides a foundation for engineering materials like tellurene to balance these trade-offs,” Huang said. “It offers valuable insights into designing thinner, more efficient devices while addressing the challenges that arise from the unique behaviors of low-dimensional materials, which is vital for the development of next-generation electronics and sensors.”

The research was supported by the National Science Foundation (2246564, 1943895, 2230400, 2329111, 2118448, 2046936), the Air Force Office of Scientific Research (FA9550-22-1-0408, FA2386-21-1-4064), the Welch Foundation (C-2144) and the U.S. Department of Energy (DE-SC0020148, DE-AC02-06CH11357, DE-AC02-05CH11231, BES-ERCAP0024568, DE-AC05-00OR22725). The content herein is solely the responsibility of the authors and does not necessarily represent the official views of the funding organizations and institutions.


-30-

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Peer-reviewed paper:

Thickness-Dependent Polaron Crossover in Tellurene | Science Advances | DOI: cccccccc

Authors: Kunyan Zhang, Chuliang Fu, Shelly Kelly, Liangbo Liang, Seoung-Hun Kang, Jing Jiang, Ruifang Zhang, Yixiu Wang, Gang Wan, Phum Siriviboon, Mina Yoon, Peide Ye, Wenzhuo Wu, Mingda Li and Shengxi Huang

https://doi.org/10.1126/sciadv.ads4763

About Rice:

Located on a 300-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of architecture, business, continuing studies, engineering and computing, humanities, music, natural sciences and social sciences and is home to the Baker Institute for Public Policy. Internationally, the university maintains the Rice Global Paris Center, a hub for innovative collaboration, research and inspired teaching located in the heart of Paris. With 4,776 undergraduates and 4,104 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 7 for best-run colleges by the Princeton Review. Rice is also rated as a best value among private universities by the Wall Street Journal and is included on Forbes’ exclusive list of “New Ivies.”


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.