News Release

Paving the way for the future of energy storage with solid-state batteries

Peer-Reviewed Publication

Advanced Institute for Materials Research (AIMR), Tohoku University

Figure 1.

image: 

Schematic representation of the future perspectives on ASSBs based on inorganic solid electrolytes (ISEs): a) multi-phase ISEs in ASSBs, b) effect of layer thickness on ASSBs performance, c) encapsulated electrolytes, and d) lock and key concept.

view more 

Credit: Eric Jianfeng Cheng et al.

Rapid advancements in solid-state battery technology are ushering in a new era of energy storage solutions, with the potential to revolutionize everything from electric vehicles to renewable energy systems. Evolutions in electrolyte engineering have played a key role in this progress, enhancing the development and performance of high-performance all-solid-state batteries (ASSBs).

A recent review paper dived into these developments and summarized the cutting-edge research on inorganic solid electrolytes (ISEs) used in ASSBs. Researchers explored how oxides, sulfides, hydroborates, antiperovskites and halides play a pivotal role in powering next-generation -batteries. These materials are not only used as electrolytes but also as catholytes and interface layers, which enhance battery performance and safety.

"We highlighted the recent breakthroughs in synthesizing these materials, honing our attention on the innovative techniques that enable the precise tuning of their properties to meet the demanding requirements of ASSBs," says Eric Jianfeng Cheng, an associate professor at Tohoku University's Advanced Institute for Materials Research (AIMR). "Precise tuning is crucial for developing batteries with higher energy densities, longer life cycles, and better safety profiles than conventional liquid-based batteries."

Cheng and his colleagues also touched on the key electrochemical characteristics of ISEs, such as ionic conductivity, stability, and compatibility with electrodes Additionally, they explored current ASSB models, proposing emerging approaches that could pave the way for the future of energy storage.

Yet, the review cautioned that several challenges remain in the development of ASSBs. One significant hurdle is the limited compatibility between ISEs and electrodes, which can lead to harmful interfacial reactions. Overcoming these issues is critical for enhancing the efficiency and longevity of ASSBs. The review outlined these challenges in detail while also sharing insights into ongoing efforts to tackle them.

"Our comprehensive review underscores the importance of continued research and development in the field of solid-state batteries. By developing new materials, improving synthesis methods, and overcoming compatibility issues, current efforts are driving innovation toward practical ASSBs that could transform how we store and use energy," adds Cheng.

The review was published in the Journal of Materials Chemistry A.

About the World Premier International Research Center Initiative (WPI)

The WPI program was launched in 2007 by Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) to foster globally visible research centers boasting the highest standards and outstanding research environments. Numbering more than a dozen and operating at institutions throughout the country, these centers are given a high degree of autonomy, allowing them to engage in innovative modes of management and research. The program is administered by the Japan Society for the Promotion of Science (JSPS).

See the latest research news from the centers at the WPI News Portal: https://www.eurekalert.org/newsportal/WPI

Main WPI program site:  www.jsps.go.jp/english/e-toplevel

Advanced Institute for Materials Research (AIMR)

Tohoku University

Establishing a World-Leading Research Center for Materials Science

AIMR aims to contribute to society through its actions as a world-leading research center for materials science and push the boundaries of research frontiers. To this end, the institute gathers excellent researchers in the fields of physics, chemistry, materials science, engineering, and mathematics and provides a world-class research environment.

 


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.