News Release

Sungkyunkwan University study reveals the hidden genomic evolution of brown algae

The study traces the evolutionary history of brown algae through genomic analysis, uncovering key milestones and highlighting potential applications

Peer-Reviewed Publication

Sungkyunkwan University External Affairs Division (PR team)

Unraveling Brown Algae's Evolutionary Pathways.

image: 

Exploring the evolutionary journey of brown algae using genomic analysis unraveling key milestones that influenced their evolution, and discussing their potential applications.

view more 

Credit: Professor Hwan Su Yoon from Sungkyunkwan University, Korea

Covering over 70% of Earth’s surface, the oceans are home to countless life forms that maintain ecological balance and support human well-being. Among these, brown algae (Phaeophyceae) play a crucial role in sustaining coastal habitats, supporting marine biodiversity, and combating climate change through carbon capture. While they have long captured interest of the scientific world, the genomic and evolutionary history of these organisms have remained largely unexplored.

A groundbreaking study by researchers from Sungkyunkwan University has unveiled the evolutionary journey of brown algae through a comprehensive genomic analysis of 44 species. The study was available online on November 20, 2024 and published on November 27, 2024 in Volume 187, Issue 24 of Cell. It created the Phaeoexplorer database, a valuable tool for comparative genomics. The researchers explored key evolutionary milestones, including the transition from unicellular to multicellular forms and the integration of viral sequences into brown algae genomes—an area previously unexplored.

The study revealed two major evolutionary milestones in the history of brown algae. Lead author Professor Hwan Su Yoon explains, "Approximately 450 million years ago, brown algae transitioned from unicellular organisms to simple multicellular forms. This shift was driven by horizontal gene transfer from bacteria, enabling the synthesis of vital cell wall components like alginate and phlorotannin. These adaptations the algae aggregate, improved cell-to-cell communication, and defend against predators, marking a crucial step in their evolution."

Around 200 million years ago, following the breakup of the supercontinent Pangaea, brown algae underwent significant species diversification. Prof. Yoon explains, "This diversification led to the development of complex life cycles, structural innovations, and specialized metabolic pathways, shaping the ecological roles of various species. The study also revealed widespread viral integration in brown algal genomes, with Phaeovirus sequences found in 67 out of 69 genomes analyzed." These viral integrations likely played a key role in shaping the evolution and diversity of brown algae.

The study offers valuable insights into practical applications of brown algae. In aquaculture, it supports selective breeding programs of commercially important species like Undaria pinnatifida and Saccharina japonica, boosting productivity and disease resistance. In biotechnology, the biosynthesis of compounds like alginate opens doors to health supplements, bioactive substances, and sustainable biomaterials. The study also highlights brown algae’s potential in climate change mitigation, particularly in carbon capture and ecosystem restoration, highlighting their ecological and economic benefits.

This study also offers valuable insights on how climate change could impact marine ecosystems. Prof. Yoon states, “By analyzing how past environmental changes shaped the evolution of brown algae, we can better predict how future climate shifts might affect marine biodiversity. The genomic resources established from this research help identify traits that enhance ecological resilience, guiding efforts to develop brown algae resistant to climate stresses such as rising temperatures and sea-level changes.” Additionally, promoting kelp forests as "blue carbon" reservoirs offers a natural solution to sequester carbon, mitigating climate change effects while fostering ecological sustainability in marine environments.

By decoding the genetic makeup of brown algae, this study enhances our understanding of marine ecosystems and provides insights into how we can use their ecological and economic potential for a more sustainable future.

The oceans hold the keys to our planet’s resilience, and this study offers a roadmap for a sustainable future rooted in the nature’s wisdom.

 

***

Reference

Title of original paper: Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems

Journal: Cell

DOI: https://doi.org/10.1016/j.cell.2024.10.049  

 

About the institute

Sungkyunkwan University (SKKU), established in 1398, is one of South Korea’s oldest and most prestigious universities. With campuses in Suwon and Seoul, it offers a wide array of programs in fields such as engineering, natural sciences, business, and humanities. SKKU is committed to fostering innovation, interdisciplinary research, and global collaboration. Known for advancing academic knowledge and producing leaders across various sectors. SKKU has earned a strong global reputation in higher education and scientific progress through its focus on cutting-edge research and international partnerships.

Website: https://www.skku.edu/eng/index.do

 

About the author

Dr. Hwan Su Yoon is an Associate Professor in the Department of Biological Sciences at Sungkyunkwan University, Korea. Prof. Yoon is a pioneer in single-cell genomics, specializing in marine protists, eukaryotic biodiversity, phylogeny, and genome evolution, with a focus on red algae and their plastid descendants. He has authored over 130 peer-reviewed publications in prestigious journals, including Science, Cell, and PNAS. His groundbreaking 2004 study in Molecular Biology & Evolution, recognized as an MBE Golden Citation Classic, established a molecular timeline for photosynthetic eukaryotes. Currently, Hwan Su serves as the President of the Organizing Committee for the 16th International Congress of Protistology, to be held in Seoul in June 2025, promoting global collaboration in protistology research.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.