News Release

Ugh, my stomach: Identifying amino acids that prevent sporulation in food poisoning

Amino acid serine inhibits Clostridium perfringens spore formation

Peer-Reviewed Publication

Osaka Metropolitan University

Clostridium perfringens spore formation in the intestines

image: 

A common cause of food poisoning, this bacteria’s growth might be regulated by the presence of certain amino acids.

view more 

Credit: Osaka Metropolitan University

Food poisoning is a common, yet unpleasant, illness caused by eating contaminated items. It is sometimes caused by Clostridium perfringens, a pathogen widely found in soil and the intestinal tracts of animals.

The pathogen multiplies in environments with little oxygen, for example, curry stored in a pot. After ingestion of the pathogen, they form spores in the small intestinal tracts. The toxins produced during spore formation cause diarrhea and abdominal pain, but the underlying mechanism of spore formation has not been fully understood.

Associate Professor Mayo Yasugi’s team at Osaka Metropolitan University’s Graduate School of Veterinary Science has examined how amino acids are involved in Clostridium perfringens spore formation. In this study, they created 21 culture mediums, 20 of which were each deprived of one of the amino acids that make proteins in the human body, to evaluate the pathogen’s development.

As a result, the team identified serine as an inhibitor of Clostridium perfringens spore formation. When observed under a microscope, it was found that serine inhibits the pathogen’s cell wall from remodeling, which is necessary in the process of becoming a spore.

“This is the first reported case where a single amino acid inhibits spore-forming anaerobic bacteria,” stated Professor Yasugi. “In the future, we hope to understand serine inhibition, the pathogenic mechanisms of Clostridium perfringens food poisoning, and the survival strategies of pathogenic microorganisms in the human body. Hopefully, this will lead to academic contributions to microbiology and infectious diseases.”

The findings were published in Anaerobe.

###

About OMU 

Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: XFacebookInstagramLinkedIn.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.