Study indicates that a fitness tracker can detect mood episodes in bipolar disorder to help drive treatment
Investigators from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, evaluated whether data collected from a fitness tracker could be used to accurately detect mood episodes in people with bipolar disorder. Their findings, published in Acta Psychiatrica Scandinavica, indicate that it is possible to detect time intervals when patients with bipolar disorder are experiencing depression or mania with high accuracy using data from fitness tracking devices.
"Most people are walking around with personal digital devices like smartphones and smartwatches that capture day-to-day data that could inform psychiatric treatment. Our goal was to use that data to identify when study participants diagnosed with bipolar disorder were experiencing mood episodes,” said corresponding author Jessica Lipschitz, PhD, an investigator in the Brigham’s Department of Psychiatry. “In the future, our hope is that machine learning algorithms like ours could help patients’ treatment teams respond fast to new or unremitting episodes in order to limit negative impact.”
Bipolar disorder (BD) is a chronic psychiatric disorder characterized by extreme mood swings, including depression, mania, and hypomania followed by periods of remission. Identification and treatment of new and unremitting mood episodes is essential for limiting the impact of BD on patients’ lives. While previous research has indicated that personal digital devices can accurately detect mood episodes, previous studies have not used methods designed for broad application in clinical settings.
As an implementation scientist, Lipschitz, together with colleagues, focused on using methods that could be broadly implemented in clinical practice. Specifically, they used commercially available personal digital devices, limited data filtering, and entirely passively collected and noninvasive data. Applying a new type of machine learning algorithm, they were able to detect clinically significant symptoms of depression with 80.1% accuracy and clinically significant symptoms of mania with 89.1% accuracy.
The researchers note that, “overall, results move the field a step toward personalized algorithms suitable for the full population of patients, rather than only those with high compliance, access to specialized devices, or willingness to share invasive data.” Their next step is to apply these predictive algorithms in routine care where they could be used to improve BD treatment by informing clinicians when their patients are experiencing depressive or manic episodes between scheduled appointments. The researchers have also been working on extending this work to major depressive disorder.
Authorship: In addition to Lipschitz, Mass General Brigham authors include Chelsea K Pike and Katherine E. Burdick. Additional authors include Sidian Lin and Soroush Saghafian.
Disclosures: Burdick serves as the chair of the steering committee and as the Scientific Director for the Integrated Network of the non-profit foundation, Breakthrough Discoveries for thriving with Bipolar Disorder (BD^2) and receives grant funding and honoraria in this capacity and also received honorarium as a scientific advisory board member for Merck in the past 12 months, but declares no financial competing interests. Lipschitz is a consultant to Solara Health Inc., but declares no financial competing interests. All other authors declare no financial or non-financial competing interests.
Funding: This research was supported by a Young Investigator Grant from the Brain & Behavior Research Foundation (#28537; to JML), a grant from the Harvard Brain Science Initiative Bipolar Disorder Seed Grant Program, and a Pathways Research Award from Alkermes, Inc. The data collection for the longitudinal study was supported in part by the Baszucki Brain Research Fund (to KEB) and the Harvard Brain Science Initiative Bipolar Disorder Seed Grant Program (to KEB). Additionally, Lipschitz's time was partially supported by the National Institute of Mental Health (NIMH) Grant MH120324. Saghafian's time was partially supported through a grant from Harvard's Middle East Initiative Kuwait Science Program, which is aimed at improving population health via machine learning and AI-enabled mobile health interventions. The funding organizations played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.
Paper Cited: Lipschitz JM et al. “Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology.” Acta Psychiatr Scand. 2024;1‐14. doi:10.1111/acps.13765
Journal
Acta Psychiatrica Scandinavica
Method of Research
Observational study
Subject of Research
People
Article Title
Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology
COI Statement
Burdick serves as the chair of the steering committee and as the Scientific Director for the Integrated Network of the non-profit foundation, Breakthrough Discoveries for thriving with Bipolar Disorder (BD^2) and receives grant funding and honoraria in this capacity and also received honorarium as a scientific advisory board member for Merck in the past 12 months, but declares no financial competing interests. Lipschitz is a consultant to Solara Health Inc., but declares no financial competing interests. All other authors declare no financial or non-financial competing interests.