News Release

Low-frequency magnetic field (LFMF) for enhanced carotenoids production by Rhodotorula glutinis

Peer-Reviewed Publication

KeAi Communications Co., Ltd.

Mechanism of a low-frequency magnetic field on iron metabolism of R. mucilaginosa

image: 

Mechanism of a low-frequency magnetic field on iron metabolism of R. mucilaginosa

view more 

Credit: Menglin Ju, et al.

Carotenoids are fat-soluble pigments known for their vibrant yellow, orange, and red hues. Extracting carotenoids from the microorganism Rhodotorula mucilaginosa offers several advantages over plant and animal sources, such as shorter production cycles, independence from seasonal variations, high production efficiency and the ability to control growth conditions precisely. Current research focuses on optimizing microbial methods for enhancing carotenoid production. 

In a study published in the KeAi journal Food Physics, a group of researchers from Yangtze University in Hubei, China, reported a low-frequency magnetic field (LFMF) intensity that could improve carotenoid yield without adversely affecting R. mucilaginosa growth.

Various LFMF intensities were used to assess carotenoid production, intracellular iron content, and the expression levels of genes related to carotenoid synthesis and iron metabolism in R. mucilaginosa.

“Specifically, deletion of the TFR and FPN1 genes significantly disrupts the growth and carotenoid synthesis of R. mucilaginosa, with distinct effects observed for each gene,” shares Mengxiang Gao, senior and corresponding author of the study. “Loss of TFR inhibited the growth of R. mucilaginosa, while markedly increasing carotenoid production and intracellular iron content.”

Conversely, the growth of ∆RmFPN1 was impeded, leading to a significant increase in intracellular iron content. “Our findings serve as initial insights into the mechanism by which LFMF impact carotenoid synthesis through the regulation of iron metabolism,” adds Gao. "We hope that our results would encourage scientists to continue investigating the use of LFMF to increase microbial secondary metabolites not just about carotenoid production in food fermentation industry applications.

###

Contact the author: Mengxiang Gao, College of Life Science, Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China, mgao@yangtzeu.edu.cn

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.