News Release

Plastic chemical causes causes DNA breakage and chromosome defects in sex cells

Phthalate impacts egg formation, leading to wrong chromosome numbers in C. elegans

Peer-Reviewed Publication

PLOS

Plastic chemical causes causes DNA breakage and chromosome defects in sex cells

image: 

BBP exposure causes chromosome organization defects in the female germline. Carnoy’s fixed and DAPI-stained images of gonads at the pachytene stage following exposure to DMSO or BBP. Images represent examples of gonads with normal germline configuration (first panel) or various chromosome organization defects in the germline including laggers (second panel), aggregates (third panel), and gaps (fourth panel). Yellow arrowheads indicate the respective defect in each panel. N = 27–31 gonads. Three biological repeats. Scale bar, 5 μm.

view more 

Credit: Henderson et al, 2024, PLOS Genetics, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

A new study conducted in roundworms finds that a common plastic ingredient causes breaks in DNA strands, resulting in egg cells with the wrong number of chromosomes. Monica Colaiácovo of Harvard Medical School led the study, which was published October 24 in the journal PLOS Genetics.

Benzyl butyl phthalate (BBP) is a chemical that makes plastic more flexible and durable, and is found in many consumer products, including food packaging, personal care products and children’s toys. Previous studies have shown that BBP interferes with the body’s hormones and affects human reproduction and development, but the details of how it impacts reproduction has been unclear. 

In the new study, researchers tested a range of doses of BBP on the nematode Caenorhabditis elegans and looked for abnormal changes in egg cells. They saw that at levels similar to those detected in humans, BBP interferes with how newly copyied chromosomes are distributed into the sex cells. Specifically, BBP causes oxidative stress and breaks in the DNA strands, which lead to cell death and egg cells with the wrong number of chromosomes.

Based on these findings, the researchers propose that BBP exposure alters gene expression in ways that cause significant damage to the DNA, ultimately leading to lower quality egg cells with abnormal chromosomes. The study also showed that C. elegans metabolizes BBP in the same way as mammals, and is impacted at similar BBP levels that occur in humans, suggesting that C. elegans is an effective model for studying the impacts in people. Overall, the study underscores the toxic nature of this very common plastic ingredient and the damage it causes to animal reproduction.

The authors summarize: “Here, examining the female germline in the nematode C. elegans, this study found that a level of exposure within the range detected in human serum and urine, alters gene expression linking increased germline oxidative stress with compromised genomic integrity and errors in meiotic chromosome segregation.”

#####

In your coverage, please use this URL to provide access to the freely available article in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011434   

Citation: Henderson AL, Karthikraj R, Berdan EL, Sui SH, Kannan K, Colaiácovo MP (2024) Exposure to benzyl butyl phthalate (BBP) leads to increased double-strand break formation and germline dysfunction in Caenorhabditis elegans. PLoS Genet 20(10): e1011434. https://doi.org/10.1371/journal.pgen.1011434

Author Countries: United States

Funding: This work was supported by the McKenzie Family Trust (M.P.C.), a Ford Foundation Fellowship Scholar Award (A.L.H) and a National Institutes of Health's National Institute of Environmental Health Sciences F31 Predoctoral Fellowship (F31ES032631; A.L.H.). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.