News Release

Scientists caution no guarantees when it comes to overshooting 1.5°C

Peer-Reviewed Publication

International Institute for Applied Systems Analysis

Even if it is possible to reverse the rise of global temperatures after a temporary overshoot of 1.5°C, some climate damages inflicted at peak warming, including rising sea levels, will be irreversible, according to a new study published today in Nature.

The study is the culmination of a three-and-a-half-year project, backed by the European innovation fund HORIZON2020, looking at so-called ‘overshoot’ scenarios where temperatures temporarily exceed the Paris Agreement’s 1.5°C limit, before descending again by achieving net-negative CO2 emissions.

“This paper does away with any notion that overshoot would deliver a similar climate outcome to a future in which we had done more, earlier, to ensure to limit peak warming to 1.5°C,” explains Carl-Friedrich Schleussner, Integrated Climate Impacts Research Group Leader in the IIASA Energy, Climate, and Environment Program and scientific advisor at Climate Analytics, who led the study. “Only by doing much more in this critical decade to bring emissions down and peak temperatures as low as possible, can we effectively limit damages,” he adds.

It matters how high and for how long we let temperatures rise

The paper highlights that if we were to exceed 1.5°C there are clear benefits to reversing warming by acting to achieve net negative emissions globally. Achieving long-term temperature decline could lower sea level rise in 2300 by about 40 cm compared to a situation in which temperatures merely stopped rising.

“Until we get to net zero, warming will continue. The earlier we can get to net zero, the lower peak warming will be, and the smaller the risks of irreversible impacts,” notes study co-author Joeri Rogelj, professor of climate science and policy and Director of Research of the Grantham Institute at Imperial College London and senior research scholar in the IIASA Energy, Climate, and Environment Program. “This underscores the importance of countries submitting ambitious new reduction pledges, or so-called Nationally Determined Contributions (NDCs), well ahead of next year’s climate summit in Brazil.”

Full carbon dioxide removal capacity needed to hedge against higher warming

The study emphasizes that while there are still pathways open to limiting warming to 1.5°C or lower in the long run, there is a need to ‘hedge’ against higher warming outcomes if the climate system warms more than median estimates. To do this, ambitious emissions reductions need to go hand in hand with scaled and environmentally sustainable carbon dioxide removal technologies. A ‘preventive capacity’ of several hundred gigatons of net removals might be required.

“There’s no way to rule out the need for large amounts of net negative emissions capabilities, so we really need to minimize our residual emissions. We cannot squander carbon dioxide removal on offsetting emissions we have the ability to avoid,” commented study coauthor Gaurav Ganti, research assistant at IIASA and a research analyst at Climate Analytics.

“Our work reinforces the urgency of governments acting to reduce our emissions now, and not later down the line. The race to net zero needs to be seen for what it is – a sprint,” Schleussner concludes.

Reference
Schleussner, C-F., Ganti, G., Lejeune, Q., Zhu, B., Pfleiderer, P., Prütz, R., Ciais, P., Frölicher, T.L., Fuss, S., Gasser, T., Gidden, M.J., et al. (2024). Overconfidence in climate overshoot. Nature DOI: 10.1038/s41586-024-08020-9  

 

About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe. www.iiasa.ac.at


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.