News Release

Moving particle simulation-aided soil plasticity analysis for earth pressure balance shield tunnelling

Computer analysis and moving particle simulation provide insights into muddy soil plasticity during earth pressure balance tunnelling

Peer-Reviewed Publication

Shibaura Institute of Technology

Distribution of earth pressure near agitation blade model simulated in reproduction of model experiment by MPS-CAE analysis system

image: 

These findings provide crucial insights into muddy soil plasticity during Earth Pressure Balance tunnelling.

view more 

Credit: Shinya Inazumi from SIT, Japan

Infrastructures often suffer severe damage due to geotechnical hazards of both natural kinds such as floods or earthquakes and man-made ones like underground construction work and excavations. The fields of civil engineering and disaster risk management have extensively studied methods to prevent these risks and are still looking for more effective ways of avoiding large-scale deformations associated with said hazards. The advent of computer-aided simulations has provided researchers with particle-based methods such as moving particle simulation (MPS) which is a valuable tool for independent deformation analysis even in larger regions. While the method has gained popularity over the last few years, they are yet to be applied for predicting ground behavior during design or construction work.

By bringing together small-scale model experimentation and a computer-aided engineering (CAE) analysis through MPS a team of researchers from Shibaura Institute of Technology led by Professor Shinya Inazumi from the College of Engineering investigated a few mysteries around earth pressure balance (EPB) shield tunnelling in their recent study published in Tunnelling and Underground Space Technology on 21 August 2024.

EPB is a widely used method for creating tunnels that utilize the excavated muddy soil to provide support for the tunnel face which is done by using foam, slurry, or other additives to plasticize the excavated material to ensure it is impermeable to water and easily transportable.

The team recognized that despite being a popular technique not much is known about how the plasticity of muddy soil adjusted by mixing excavated soil with plasticizing additives like bentonite solution affects the earth pressure inside a tunnelling chamber. Insights into these factors can not only significantly increase the chances of avoiding ground deformations but also ensure efficient sediment management during the tunnelling process.

Urban centres are increasingly getting reliant on underground infrastructures therefore we wanted a prediction tool that can improve the resilience of urban infrastructure while lowering the costs associated with delays and structural damage due to unstable tunnel operations by ensuring efficient management of soil plasticity,” Prof. Inazumi adds, explaining the motivation behind this study. He also highlighted that since the research lab associated with the study aligns itself with the UN’s sustainable development goals, they also explored the environmental footprint arising from large volumes of excavated material and the use of chemical additives such as bentonite in search of ways to improve the sustainability of construction projects.

The experimental setup consisted of a sealable soil tank simulating a chamber and descending and ascending stages of an agitation blade model that was performed by installing a twin-pair earth pressure gauge in a shield tunnelling machine. This system along with the calculations by a computer-aided analysis system based on a moving particle simulation (MPS) was able to precisely simulate the tunnelling process which included measuring the variations in earth pressure in response to plasticity variation induced by the agitation of muddy soil.

The researchers found earth pressure a trustworthy reliable indicator for analyzing soil’s plasticity and correlating factors such as vane shear strength and slump value which together impact the stability of the tunnel and the operation of machinery. Backed by MPS, the CAE analysis system proposed by the team precisely reflects the experimental data, confirming its suitability for assessing and visualizing the plasticity and fluidity of muddy soil during tunnelling.

Evaluating the value of earth pressure in actual field conditions by analyzing the plasticity state of the muddy soil in different soil conditions can be both time-consuming and an expensive affair. The small-scale model experiment when combined with the computation power demonstrated in this study can be a valuable asset for optimizing EPB shield tunnelling operations and improving sediment management strategies. Thus, opening new possibilities for innovating strategies that can significantly improve the safety and efficiency of underground civil construction works especially in the urban environments.

The results of this study can directly influence the construction of subway systems, underground utilities, and roads in densely populated urban areas by enabling controlled operations that cause less disturbance to the surrounding ground. We also hope that our proposed strategy is applied to optimize the environmental impact of the tunnelling process and improve safety protocols in areas prone to earthquakes or other geotechnical hazards,” concludes Prof. Inazumi.

 

***

 

Reference

Title of original paper: Assessment of plasticity of muddy soil for earth pressure balance shield tunneling

Journal: Tunnelling and Underground Space Technology

DOI: https://doi.org/10.1016/j.tust.2024.106044  

 

About Shibaura Institute of Technology (SIT), Japan

Shibaura Institute of Technology (SIT) is a private university with campuses in Tokyo and Saitama. Since the establishment of its predecessor, Tokyo Higher School of Industry and Commerce, in 1927, it has maintained “learning through practice” as its philosophy in the education of engineers. SIT was the only private science and engineering university selected for the Top Global University Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology and had received support from the ministry for 10 years starting from the 2014 academic year. Its motto, “Nurturing engineers who learn from society and contribute to society,” reflects its mission of fostering scientists and engineers who can contribute to the sustainable growth of the world by exposing their over 9,500 students to culturally diverse environments, where they learn to cope, collaborate, and relate with fellow students from around the world.

Website: https://www.shibaura-it.ac.jp/en/

 

About Professor Shinya Inazumi from SIT, Japan

Shinya Inazumi is a Professor at the Department of Civil Engineering at Shibaura Institute of Technology (SIT) since 2017. Before joining SIT he worked as an Assistant Professor for over a decade in the Department of Urban Management at his alma mater, Kyoto University. He has also served as an Associate Professor at the National Institute of Technology at Akashi College. Inazumi’s areas of expertise include geoenvironmental engineering, environmental improvements, reconstruction from disasters, urban environments and geotechnics. Currently, his lab is actively working on aligning their research goals to the UN’s sustainable development goals or SDGs. 


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.