For the first time, astronomers have captured images of a star other than the Sun in enough detail to track the motion of bubbling gas on its surface. The images of the star, R Doradus, were obtained with the Atacama Large Millimeter/submillimeter Array (ALMA), a telescope co-owned by the European Southern Observatory (ESO), in July and August 2023. They show giant, hot bubbles of gas, 75 times the size of the Sun, appearing on the surface and sinking back into the star’s interior faster than expected.
“This is the first time the bubbling surface of a real star can be shown in such a way,“ [1] says Wouter Vlemmings, a professor at Chalmers University of Technology, Sweden, and lead author of the study published today in Nature. “We had never expected the data to be of such high quality that we could see so many details of the convection on the stellar surface.”
Stars produce energy in their cores through nuclear fusion. This energy can be carried out towards the star’s surface in huge, hot bubbles of gas, which then cool down and sink — like a lava lamp. This mixing motion, known as convection, distributes the heavy elements formed in the core, such as carbon and nitrogen, throughout the star. It is also thought to be responsible for the stellar winds that carry these elements out into the cosmos to build new stars and planets.
Convection motions had never been tracked in detail in stars other than the Sun, until now. By using ALMA, the team were able to obtain high-resolution images of the surface of R Doradus over the course of a month. R Doradus is a red giant star, with a diameter roughly 350 times that of the Sun, located about 180 light-years away from Earth in the constellation Dorado. Its large size and proximity to Earth make it an ideal target for detailed observations. Furthermore, its mass is similar to that of the Sun, meaning R Doradus is likely fairly similar to how our Sun will look like in five billion years, once it becomes a red giant.
“Convection creates the beautiful granular structure seen on the surface of our Sun, but it is hard to see on other stars,” adds Theo Khouri, a researcher at Chalmers who is a co-author of the study. “With ALMA, we have now been able to not only directly see convective granules — with a size 75 times the size of our Sun! — but also measure how fast they move for the first time.”
The granules of R Doradus appear to move on a one-month cycle, which is faster than scientists expected based on how convection works in the Sun. “We don’t yet know what is the reason for the difference. It seems that convection changes as a star gets older in ways that we don't yet understand,” says Vlemmings. Observations like those now made of R Doradus are helping us to understand how stars like the Sun behave, even when they grow as cool, big and bubbly as R Doradus is.
“It is spectacular that we can now directly image the details on the surface of stars so far away, and observe physics that until now was mostly only observable in our Sun,” concludes Behzad Bojnodi Arbab, a PhD student at Chalmers who was also involved in the study.
Notes
[1] Convection bubbles have been previously observed in detail on the surface of stars, including with the PIONIER instrument on ESO's Very Large Telescope Interferometer. But the new ALMA observations track the motion of the bubbles in a way that was not possible before.
More information
This research was presented in a paper entitled “One month convection timescale on the surface of a giant evolved star” to appear in Nature (doi:10.1038/s41586-024-07836-9).
The team is composed of W. Vlemmings (Chalmers University of Technology, Sweden [Chalmers]), T. Khouri (Chalmers), B. Bojnordi (Chalmers), E. De Beck (Chalmers), and M. Maercker (Chalmers).
The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.
Links
- Research paper
- Photos of ALMA
- For journalists: subscribe to receive our releases under embargo in your language
- For scientists: got a story? Pitch your research
Contacts
Wouter Vlemmings
Chalmers University of Technology
Gothenburg, Sweden
Tel: +46 31 772 63 54
Email: wouter.vlemmings@chalmers.se
Theo Kouri
Chalmers University of Technology
Gothenburg, Sweden
Tel: +46 31 772 6022
Email: theo.khouri@chalmers.se
Behzad Bojnodi Arbab
Chalmers University of Technology
Gothenburg, Sweden
Email: bojnordi@chalmers.se
Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email: press@eso.org
Journal
Nature