News Release

Graduate student found evidence of water vapor in the atmosphere of a hot Saturn

Water vapor in the atmosphere of a hot Saturn

Peer-Reviewed Publication

National Institutes of Natural Sciences

HD 149026 b: Hot Saturn’s atmosphere

image: 

Artist’s conception of the HD 149026 b. Evidence of water vapor in this Hot Saturn’s atmosphere has been discovered. 

view more 

Credit: Astrobiology Center

This study discovered evidence of water vapor in the atmosphere of the hot Saturn, HD 149026 b. This exoplanet, located about 250 light years from Earth in the Hercules constellation, is a type of hot gas giant similar in size to Saturn but orbits extremely close to its host star. It orbits a metal-rich evolved star, HD 149026, nearly 10 times closer than Mercury’s orbit around the Sun, resulting in a year that lasts only about 2.9 days. This proximity causes the temperatures of such hot gas giants to soar above 1500 Kelvin. Specifically, HD 149026 b has an equilibrium temperature of approximately 1700 Kelvin, hot enough to melt even the strongest steel.

To detect atmospheric signatures from the planet, the team used a technique called transmission spectroscopy. When the planet transits or passes in front of its host star relative to the observer on Earth, some of the star’s light passes through the planet’s atmosphere. This starlight is absorbed by various gases in the atmosphere, creating a planetary absorption spectrum that is imprinted on the stellar spectrum. By separating the stellar spectrum from the planetary spectrum, such as by subtracting the spectrum observed outside of transit (where there’s no atmospheric absorption from the planet), the atmospheric signatures of the planet can be identified.

One major challenge in observing exoplanetary atmospheres is the extremely high contrast between the bright star and the dim planet. This makes the planet’s atmospheric signatures difficult to detect, often buried below the stellar photon noise. The strength of the planet’s signatures would be stronger if we observed planets with either higher temperatures (resulting in more extended atmospheres and easier detection), closer distances to their host stars (making it easier to separate the stellar and planet spectra), or a combination of both. Hot gas giants possess both these properties, making them ideal targets for transmission spectroscopy observations, though their atmospheric signatures remain challenging to detect.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.