A recent study has developed nanovesicles (NVs) from activated neutrophils, showcasing their ability to perform molecular debridement and accelerate healing in infectious wounds. This novel method significantly enhances treatment effectiveness, particularly for stubborn diabetic wounds, by targeting and neutralizing deep tissue pathogens.
Infectious wounds represent a critical challenge in healthcare, especially for diabetic patients grappling with ineffective antibiotics and escalating drug resistance. Conventional therapies often inadequately address deep tissue infections, highlighting the need for more innovative solutions. Engineered nanovesicles (NVs) from activated neutrophils provide a precise mechanism to combat pathogens deeply embedded in tissues, potentially revolutionizing the management of complex infectious wounds and boosting overall treatment efficacy.
Researchers at the Research Center for Neutrophil Engineering Technology have achieved a significant advancement in medical nanotechnology. Their findings (DOI: 10.1093/burnst/tkae018), published in the esteemed journal Burns & Trauma on June 20, 2024, detail the creation of novel neutrophil-engineered NVs. These NVs, rich in bactericidal proteins, are set to transform infectious wound treatment by amplifying the body's natural immune response at the injury site.
This study reveals that engineered NVs derived from activated neutrophils not only mimic the physical properties of exosomes but surpass them due to their rich content of bactericidal proteins. Extensively tested both in vitro and in vivo, these NVs effectively combat key pathogens like Staphylococcus aureus and Escherichia coli, which contribute to deep tissue infections. The NVs promote rapid debridement, significantly reduce bacterial populations, and boost collagen deposition, thus hastening the healing process. This research positions NVs as a formidable alternative to traditional antibiotics, introducing a novel method for treating resistant infections and advancing the field of wound care.
Dr. Bingwei Sun, the lead researcher, emphasized, "These engineered NVs mark a major advancement in the management of infectious diseases. By targeting the infection site with high levels of bactericidal proteins, we achieve swift and effective healing, thereby opening new paths for the treatment of chronic and resistant infections."
The advent of activated neutrophil-derived NVs signifies a major leap in medical technology, potentially reducing healthcare costs and enhancing patient outcomes. This innovation not only promises to improve wound healing in diabetic and other chronic infection patients but also sets the stage for further development of biologically inspired therapeutic strategies.
###
References
DOI
Original Source URL
https://doi.org/10.1093/burnst/tkae018
Funding information
This work was supported by National Natural Science Foundation of China (No. 82072217, 81772135 and U21A20370).
About Burns & Trauma
Burns & Trauma is an open access, peer-reviewed journal publishing the latest developments in basic, clinical, and translational research related to burns and traumatic injuries, with a special focus on various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, prevention, and regeneration of burns and trauma injury.
Journal
Burns & Trauma
Subject of Research
Not applicable
Article Title
Engineered nanovesicles from activated neutrophils with enriched bactericidal proteins have molecular debridement ability and promote infectious wound healing
Article Publication Date
20-Jun-2024
COI Statement
The authors declare that they have no competing interests.