News Release

AIGC视觉内容生成与溯源研究进展

Peer-Reviewed Publication

Beijing Zhongke Journal Publising Co. Ltd.

图像生成技术的发展

image: 生成技术的发展始于生成对抗网络(GANs),后来发展到自回归模型和扩散模型,现在则侧重于可控生成。 view more 

Credit: 北京中科期刊出版有限公司

近日,《中国图象图形学报》杂志在线发表了天津大学刘安安教授,苏育挺教授和王岚君研究员等学者对于AIGC视觉内容生成和溯源的领域进展综述。随着数字媒体与创意产业的快速发展,AIGC技术以其在视觉内容生成中的创新应用而逐渐受到关注。本文旨在围绕AIGC视觉内容生成与溯源研究进展深入研讨。首先,针对图像生成技术进行了探讨,从基于生成式对抗网络的传统方法出发,系统地分析了基于生成式对抗网络、自回归模型和扩散概率模型的最新进展。接着,本文深入探讨可控图像生成技术,突出了通过布局、线稿等附加信息以及基于视觉参考的方法来为创作者提供精确控制的技术现状。随着图像生成技术的革新和应用,生成图像的安全性问题逐渐浮现。然而,预先审核和过滤的技术手段已难以满足实际需求,故亟需实现生成内容的溯源来进行监管。因此,本文进而对生成图像溯源技术进行研讨,并聚焦水印技术在确保生成内容可靠性和安全性方面的应用。本文依据水印嵌入的流程节点,首先将现有的水印相关的生成图像溯源方法归为无水印嵌入的生成图像溯源、水印前置嵌入的生成图像溯源、水印后置嵌入的生成图像溯源以及联合生成的生成图像溯源并进行详细分析,然后介绍针对生成图像的水印攻击研究现状,最后对生成图像溯源技术进行总结和展望。鉴于视觉内容生成在质量和安全上的挑战,本文旨在为研究者提供一个视觉内容生成与溯源的系统研究视角,以促进数字媒体创作环境的安全与可信,并引导未来相关技术的发展方向。

研究详情请见原文:

https://doi.org/10.11834/jig.240003 


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.