News Release

Permeable carbon fiber based thermoelectric film with exceptional EMI shielding performance and sensor capabilities

Peer-Reviewed Publication

Tsinghua University Press

Thermoelectric technology, which enables the direct conversion of heat into electricity, has emerged as a promising alternative energy source. Notably, this technology can efficiently convert body heat into electrical energy, garnering significant attention in the field of wearable electronics. However, the dense structure of most thermoelectric materials results in ultra-low moisture permeability. In practical applications, insufficient moisture permeability can trap heat and humidity, fostering bacterial growth and potentially causing skin lesions. Hence, developing thermoelectric materials with superior moisture permeability is crucial.

 

A team led by Peng-an Zong from the School of Materials Science and Engineering at Nanjing Tech University in China recently developed CF/Sb2Te3 (CF/Bi2Te3) films with exceptional thermoelectric properties and moisture permeability. The cross-linked core-shell structure of carbon fiber internals, achieved through electrodeposition, enhanced electrical conductivity. Additionally, the electromagnetic interference shielding effectiveness (EMI SE) of the composite film was significantly improved. The films were then utilized in sensors, demonstrating effective touch and breathing sensing capabilities.

 

The team published their study in Journal of Advanced Ceramics on June 5, 2024.

 

The researchers used carbon fiber (CF) as the substrate material and employed electrodeposition to grow Sb2Te3 and Bi2Te3 on the CF. They studied the films' performance by varying deposition coulombs, deposition potential, and other parameters. The increased internal fiber diameter facilitated carrier movement, significantly enhancing electrical conductivity and thermoelectric performance. As a result, the power factor of the composite film was 300 times higher than that of the CF substrate.

 

After the electrodeposition of thermoelectric materials, the significant increase in fiber column diameter reduces the surrounding pore size, resulting in a moisture permeability 5% lower than that of CF, but still exceeding 3000 g m−2 day−1. Due to various mechanisms, the EMI shielding effectiveness (EMI SE) of the composite film can reach up to 93 dB.

 

After electrodeposition of thermoelectric materials, due to the significant increase in the diameter of the fiber column, the surrounding pores are reduced, and the moisture permeability is only 5% lower than that of CF, which over 3000 g m−2 day−1. Owing to the internal fiber structure, the EMI SE of the composite film can reach up to 93 dB.

 

In addition, the researchers selected the composite films with the best performance for integration of the sensor, which was utilized in touch sensing and respiratory sensing applications. The practical application scenarios of the sensor were demonstrated, and its cycle performance was tested, confirming that the sensor exhibits excellent stability.

 

This work was supported by NSAF (no. U2230131), Natural Science Foundation of Jiangsu Province (no. BK20211264), State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (no. KF202207), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_0548 and KYCX23_1396), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

 


About Journal of Advanced Ceramics

Journal of Advanced Ceramics (JAC) is an international journal that presents the state-of-the-art results of theoretical and experimental studies on the processing, structure, and properties of advanced ceramics and ceramic-based composites. JAC is Fully Open Access, monthly published by Tsinghua University Press on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University) and the Advanced Ceramics Division of the Chinese Ceramic Society, and exclusively available via SciOpen. JAC has been indexed in SCIE (IF = 16.9, top 1/28, Q1), Scopus, and Ei Compendex.

About SciOpen 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.