News Release

Self-assembled Na-doped zinc oxide for the detection of lung cancer biomarker VOCs at low concentrations

Peer-Reviewed Publication

Tsinghua University Press

Urchin-like Na-doped zinc oxide nanoneedles for detecting lung cancer biomarkers

image: 

Response curves of urchin-like ZnO and NaZnO1 sensors to 5 ppm HCHO at 225℃, 50% RH

view more 

Credit: Journal of Advanced Ceramics, Tsinghua University Press

Developing high-performance gas sensors for the detection of lung cancer markers at low concentrations is a crucial step towards achieving early lung cancer monitoring through breath tests. Metal Oxide Semiconductors (MOS) have long been sensitive to Volatile Organic Compounds (VOCs), demonstrating excellent performance characteristics. However, the concentration of characteristic VOCs for lung cancer detection based on breath tests (such as formaldehyde, isopropanol, acetone, and ammonia) is typically less than 1ppm. Most metal oxides struggle to respond at such low concentrations, which can impact the early diagnosis of lung cancer.

 

Gas sensors based on metal oxide semiconductors (MOS) have shown promise in detecting VOCs, but their effectiveness at very low concentrations remains a challenge. The concentration of lung cancer biomarker VOCs (such as formaldehyde, isopropanol, acetone, and ammonia) in breath samples are often below 1 ppm, making it difficult for most metal oxides to generate a high response. Overcoming this limitation is essential for improving early lung cancer diagnosis.

 

To address the above-mentioned challenges, a team of material scientists led by Professor Chao Zhang from the Institute of Surface Engineering at Yangzhou University, China, recently outlined the development of alkali metal ion doped ZnO nanoneedles, specifically doped with sodium Na ions, assisted by citric acid. This approach aims to enhance the performance of metal oxide-based electrochemical gas sensors, enabling high responsiveness for detecting VOCs at low concentrations."

 

The team published their study in Journal of Advanced Ceramics on April 30, 2024.

 

“Metal ion doping is effectively used to improve the sensing performance of ZnO. Specially, ZnO is highly sensitive to alkali metal elements and exhibits good doping stability, which will make it easier for ions to be doped into the lattice of ZnO, leading to the formation of more oxygen vacancies . In addition, the solubility of alkali metals in the ZnO lattice is closely related to the radius of the dopant ions, and a low concentration of doping will make it difficult to generate the acceptor energy level. Na ions have a higher radius than Zn ions and show high solubility. It is favorable to improve the stable concentration of Na doping, leading to the formation of the shallow acceptor level.” said Chao Zhang, senior author of the study.

 

The researchers used a solvothermal method to fabricate three-dimensional nanoneedles of Na-doped ZnO with different amounts of citric acid. The team evaluated the gas sensing properties of Na-doped ZnO to lung cancer biomarkers at sub-ppm concentrations, the preparation method was optimized, and the optimum ratio of citric acid and Na ion was obtained. The experimental showed that the Na-doped ZnO gas sensor exhibited a high sensitivity (~ 21.3@5ppm/50% RH) to lung cancer biomarker VOCs at low concentrations, which is 7 times higher than that of pure ZnO. In addition, the resulting gas sensor exhibited excellent selectivity for formaldehyde, good humidity resistance, and reliable repeatability at an optimal temperature of 225°C.

 

In addition, the researchers explained the mechanism of the improved gas-sensitive performance. the Na ions replaced the Zn ion centers to produce more oxygen vacancies, which increased the concentration of oxygen defects (Ov= 20.98%), and the target gas adsorption sites were increased. Moreover, Na was introduced as an impurity energy level to become the acceptor energy level close to the top of the valence band, which was in contact with the valence band of the pure ZnO, which lowered the width of bandgap, and further stimulated the electron leaps, thus improving the gas-sensitive performance.

 

This work was supported by the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20211548), the Yangzhou Science and Technology Plan Project (No. YZ2023246), the Qinglan Project of Yangzhou University, and the Research Innovation Plan of Graduate Education Innovation Project in Jiangsu Province (No. KYCX23_3530).

 


About Journal of Advanced Ceramics

Journal of Advanced Ceramics (JAC) is an international journal that presents the state-of-the-art results of theoretical and experimental studies on the processing, structure, and properties of advanced ceramics and ceramic-based composites. JAC is Fully Open Access, monthly published by Tsinghua University Press on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University) and the Advanced Ceramics Division of the Chinese Ceramic Society, and exclusively available via SciOpen. JAC has been indexed in SCIE (IF = 16.9, top 1/28, Q1), Scopus, and Ei Compendex.

About SciOpen 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.